MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscau3 Structured version   Visualization version   GIF version

Theorem iscau3 25331
Description: Express the Cauchy sequence property in the more conventional three-quantifier form. (Contributed by NM, 19-Dec-2006.) (Revised by Mario Carneiro, 14-Nov-2013.)
Hypotheses
Ref Expression
iscau3.2 𝑍 = (ℤ𝑀)
iscau3.3 (𝜑𝐷 ∈ (∞Met‘𝑋))
iscau3.4 (𝜑𝑀 ∈ ℤ)
Assertion
Ref Expression
iscau3 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))))
Distinct variable groups:   𝑗,𝑘,𝑚,𝑥,𝐷   𝑗,𝐹,𝑘,𝑚,𝑥   𝜑,𝑗,𝑘,𝑥   𝑗,𝑋,𝑘,𝑚,𝑥   𝑗,𝑀   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑚)   𝑀(𝑥,𝑘,𝑚)   𝑍(𝑚)

Proof of Theorem iscau3
StepHypRef Expression
1 iscau3.3 . . 3 (𝜑𝐷 ∈ (∞Met‘𝑋))
2 iscau2 25330 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
31, 2syl 17 . 2 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
41adantr 480 . . . . . 6 ((𝜑𝐹 ∈ (𝑋pm ℂ)) → 𝐷 ∈ (∞Met‘𝑋))
5 ssid 4031 . . . . . . 7 ℤ ⊆ ℤ
6 simpr 484 . . . . . . 7 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) → (𝐹𝑘) ∈ 𝑋)
7 eleq1 2832 . . . . . . 7 ((𝐹𝑘) = (𝐹𝑗) → ((𝐹𝑘) ∈ 𝑋 ↔ (𝐹𝑗) ∈ 𝑋))
8 eleq1 2832 . . . . . . 7 ((𝐹𝑘) = (𝐹𝑚) → ((𝐹𝑘) ∈ 𝑋 ↔ (𝐹𝑚) ∈ 𝑋))
9 xmetsym 24378 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋 ∧ (𝐹𝑘) ∈ 𝑋) → ((𝐹𝑗)𝐷(𝐹𝑘)) = ((𝐹𝑘)𝐷(𝐹𝑗)))
109fveq2d 6924 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋 ∧ (𝐹𝑘) ∈ 𝑋) → ( I ‘((𝐹𝑗)𝐷(𝐹𝑘))) = ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))))
11 xmetsym 24378 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑚) ∈ 𝑋 ∧ (𝐹𝑗) ∈ 𝑋) → ((𝐹𝑚)𝐷(𝐹𝑗)) = ((𝐹𝑗)𝐷(𝐹𝑚)))
1211fveq2d 6924 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑚) ∈ 𝑋 ∧ (𝐹𝑗) ∈ 𝑋) → ( I ‘((𝐹𝑚)𝐷(𝐹𝑗))) = ( I ‘((𝐹𝑗)𝐷(𝐹𝑚))))
13 simp1 1136 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → 𝐷 ∈ (∞Met‘𝑋))
14 simp2l 1199 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → (𝐹𝑘) ∈ 𝑋)
15 simp3l 1201 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → (𝐹𝑗) ∈ 𝑋)
16 xmetcl 24362 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑗) ∈ 𝑋) → ((𝐹𝑘)𝐷(𝐹𝑗)) ∈ ℝ*)
1713, 14, 15, 16syl3anc 1371 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((𝐹𝑘)𝐷(𝐹𝑗)) ∈ ℝ*)
18 simp2r 1200 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → (𝐹𝑚) ∈ 𝑋)
19 xmetcl 24362 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) → ((𝐹𝑗)𝐷(𝐹𝑚)) ∈ ℝ*)
2013, 15, 18, 19syl3anc 1371 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((𝐹𝑗)𝐷(𝐹𝑚)) ∈ ℝ*)
21 simp3r 1202 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → 𝑥 ∈ ℝ)
2221rehalfcld 12540 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → (𝑥 / 2) ∈ ℝ)
2322rexrd 11340 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → (𝑥 / 2) ∈ ℝ*)
24 xlt2add 13322 . . . . . . . . . 10 (((((𝐹𝑘)𝐷(𝐹𝑗)) ∈ ℝ* ∧ ((𝐹𝑗)𝐷(𝐹𝑚)) ∈ ℝ*) ∧ ((𝑥 / 2) ∈ ℝ* ∧ (𝑥 / 2) ∈ ℝ*)) → ((((𝐹𝑘)𝐷(𝐹𝑗)) < (𝑥 / 2) ∧ ((𝐹𝑗)𝐷(𝐹𝑚)) < (𝑥 / 2)) → (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) < ((𝑥 / 2) +𝑒 (𝑥 / 2))))
2517, 20, 23, 23, 24syl22anc 838 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((((𝐹𝑘)𝐷(𝐹𝑗)) < (𝑥 / 2) ∧ ((𝐹𝑗)𝐷(𝐹𝑚)) < (𝑥 / 2)) → (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) < ((𝑥 / 2) +𝑒 (𝑥 / 2))))
2622, 22rexaddd 13296 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((𝑥 / 2) +𝑒 (𝑥 / 2)) = ((𝑥 / 2) + (𝑥 / 2)))
2721recnd 11318 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → 𝑥 ∈ ℂ)
28272halvesd 12539 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((𝑥 / 2) + (𝑥 / 2)) = 𝑥)
2926, 28eqtrd 2780 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((𝑥 / 2) +𝑒 (𝑥 / 2)) = 𝑥)
3029breq2d 5178 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) < ((𝑥 / 2) +𝑒 (𝑥 / 2)) ↔ (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥))
31 xmettri 24382 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋 ∧ (𝐹𝑗) ∈ 𝑋)) → ((𝐹𝑘)𝐷(𝐹𝑚)) ≤ (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))))
3213, 14, 18, 15, 31syl13anc 1372 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((𝐹𝑘)𝐷(𝐹𝑚)) ≤ (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))))
33 xmetcl 24362 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) → ((𝐹𝑘)𝐷(𝐹𝑚)) ∈ ℝ*)
3413, 14, 18, 33syl3anc 1371 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((𝐹𝑘)𝐷(𝐹𝑚)) ∈ ℝ*)
3517, 20xaddcld 13363 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) ∈ ℝ*)
3621rexrd 11340 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → 𝑥 ∈ ℝ*)
37 xrlelttr 13218 . . . . . . . . . . . 12 ((((𝐹𝑘)𝐷(𝐹𝑚)) ∈ ℝ* ∧ (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) ∈ ℝ*𝑥 ∈ ℝ*) → ((((𝐹𝑘)𝐷(𝐹𝑚)) ≤ (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) ∧ (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
3834, 35, 36, 37syl3anc 1371 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((((𝐹𝑘)𝐷(𝐹𝑚)) ≤ (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) ∧ (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
3932, 38mpand 694 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥 → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
4030, 39sylbid 240 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) < ((𝑥 / 2) +𝑒 (𝑥 / 2)) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
4125, 40syld 47 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((((𝐹𝑘)𝐷(𝐹𝑗)) < (𝑥 / 2) ∧ ((𝐹𝑗)𝐷(𝐹𝑚)) < (𝑥 / 2)) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
42 ovex 7481 . . . . . . . . . . 11 ((𝐹𝑘)𝐷(𝐹𝑗)) ∈ V
43 fvi 6998 . . . . . . . . . . 11 (((𝐹𝑘)𝐷(𝐹𝑗)) ∈ V → ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) = ((𝐹𝑘)𝐷(𝐹𝑗)))
4442, 43ax-mp 5 . . . . . . . . . 10 ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) = ((𝐹𝑘)𝐷(𝐹𝑗))
4544breq1i 5173 . . . . . . . . 9 (( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) ↔ ((𝐹𝑘)𝐷(𝐹𝑗)) < (𝑥 / 2))
46 ovex 7481 . . . . . . . . . . 11 ((𝐹𝑗)𝐷(𝐹𝑚)) ∈ V
47 fvi 6998 . . . . . . . . . . 11 (((𝐹𝑗)𝐷(𝐹𝑚)) ∈ V → ( I ‘((𝐹𝑗)𝐷(𝐹𝑚))) = ((𝐹𝑗)𝐷(𝐹𝑚)))
4846, 47ax-mp 5 . . . . . . . . . 10 ( I ‘((𝐹𝑗)𝐷(𝐹𝑚))) = ((𝐹𝑗)𝐷(𝐹𝑚))
4948breq1i 5173 . . . . . . . . 9 (( I ‘((𝐹𝑗)𝐷(𝐹𝑚))) < (𝑥 / 2) ↔ ((𝐹𝑗)𝐷(𝐹𝑚)) < (𝑥 / 2))
5045, 49anbi12i 627 . . . . . . . 8 ((( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) ∧ ( I ‘((𝐹𝑗)𝐷(𝐹𝑚))) < (𝑥 / 2)) ↔ (((𝐹𝑘)𝐷(𝐹𝑗)) < (𝑥 / 2) ∧ ((𝐹𝑗)𝐷(𝐹𝑚)) < (𝑥 / 2)))
51 ovex 7481 . . . . . . . . . 10 ((𝐹𝑘)𝐷(𝐹𝑚)) ∈ V
52 fvi 6998 . . . . . . . . . 10 (((𝐹𝑘)𝐷(𝐹𝑚)) ∈ V → ( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) = ((𝐹𝑘)𝐷(𝐹𝑚)))
5351, 52ax-mp 5 . . . . . . . . 9 ( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) = ((𝐹𝑘)𝐷(𝐹𝑚))
5453breq1i 5173 . . . . . . . 8 (( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥 ↔ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)
5541, 50, 543imtr4g 296 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) ∧ ( I ‘((𝐹𝑗)𝐷(𝐹𝑚))) < (𝑥 / 2)) → ( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
565, 6, 7, 8, 10, 12, 55cau3lem 15403 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → (∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
574, 56syl 17 . . . . 5 ((𝜑𝐹 ∈ (𝑋pm ℂ)) → (∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
5844breq1i 5173 . . . . . . . . . 10 (( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥 ↔ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)
5958anbi2i 622 . . . . . . . . 9 (((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
60 df-3an 1089 . . . . . . . . 9 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
6159, 60bitr4i 278 . . . . . . . 8 (((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
6261ralbii 3099 . . . . . . 7 (∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
6362rexbii 3100 . . . . . 6 (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
6463ralbii 3099 . . . . 5 (∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
6554ralbii 3099 . . . . . . . . . 10 (∀𝑚 ∈ (ℤ𝑘)( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥 ↔ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)
6665anbi2i 622 . . . . . . . . 9 (((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
67 df-3an 1089 . . . . . . . . 9 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
6866, 67bitr4i 278 . . . . . . . 8 (((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
6968ralbii 3099 . . . . . . 7 (∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
7069rexbii 3100 . . . . . 6 (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
7170ralbii 3099 . . . . 5 (∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
7257, 64, 713bitr3g 313 . . . 4 ((𝜑𝐹 ∈ (𝑋pm ℂ)) → (∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
73 iscau3.4 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
7473adantr 480 . . . . . 6 ((𝜑𝐹 ∈ (𝑋pm ℂ)) → 𝑀 ∈ ℤ)
75 iscau3.2 . . . . . . 7 𝑍 = (ℤ𝑀)
7675rexuz3 15397 . . . . . 6 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
7774, 76syl 17 . . . . 5 ((𝜑𝐹 ∈ (𝑋pm ℂ)) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
7877ralbidv 3184 . . . 4 ((𝜑𝐹 ∈ (𝑋pm ℂ)) → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
7972, 78bitr4d 282 . . 3 ((𝜑𝐹 ∈ (𝑋pm ℂ)) → (∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
8079pm5.32da 578 . 2 (𝜑 → ((𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))))
813, 80bitrd 279 1 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  Vcvv 3488   class class class wbr 5166   I cid 5592  dom cdm 5700  cfv 6573  (class class class)co 7448  pm cpm 8885  cc 11182  cr 11183   + caddc 11187  *cxr 11323   < clt 11324  cle 11325   / cdiv 11947  2c2 12348  cz 12639  cuz 12903  +crp 13057   +𝑒 cxad 13173  ∞Metcxmet 21372  Cauccau 25306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-2 12356  df-z 12640  df-uz 12904  df-rp 13058  df-xneg 13175  df-xadd 13176  df-psmet 21379  df-xmet 21380  df-bl 21382  df-cau 25309
This theorem is referenced by:  iscau4  25332  caucfil  25336  cmetcaulem  25341  heibor1lem  37769
  Copyright terms: Public domain W3C validator