MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscau3 Structured version   Visualization version   GIF version

Theorem iscau3 25176
Description: Express the Cauchy sequence property in the more conventional three-quantifier form. (Contributed by NM, 19-Dec-2006.) (Revised by Mario Carneiro, 14-Nov-2013.)
Hypotheses
Ref Expression
iscau3.2 𝑍 = (ℤ𝑀)
iscau3.3 (𝜑𝐷 ∈ (∞Met‘𝑋))
iscau3.4 (𝜑𝑀 ∈ ℤ)
Assertion
Ref Expression
iscau3 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))))
Distinct variable groups:   𝑗,𝑘,𝑚,𝑥,𝐷   𝑗,𝐹,𝑘,𝑚,𝑥   𝜑,𝑗,𝑘,𝑥   𝑗,𝑋,𝑘,𝑚,𝑥   𝑗,𝑀   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑚)   𝑀(𝑥,𝑘,𝑚)   𝑍(𝑚)

Proof of Theorem iscau3
StepHypRef Expression
1 iscau3.3 . . 3 (𝜑𝐷 ∈ (∞Met‘𝑋))
2 iscau2 25175 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
31, 2syl 17 . 2 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
41adantr 480 . . . . . 6 ((𝜑𝐹 ∈ (𝑋pm ℂ)) → 𝐷 ∈ (∞Met‘𝑋))
5 ssid 3958 . . . . . . 7 ℤ ⊆ ℤ
6 simpr 484 . . . . . . 7 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) → (𝐹𝑘) ∈ 𝑋)
7 eleq1 2816 . . . . . . 7 ((𝐹𝑘) = (𝐹𝑗) → ((𝐹𝑘) ∈ 𝑋 ↔ (𝐹𝑗) ∈ 𝑋))
8 eleq1 2816 . . . . . . 7 ((𝐹𝑘) = (𝐹𝑚) → ((𝐹𝑘) ∈ 𝑋 ↔ (𝐹𝑚) ∈ 𝑋))
9 xmetsym 24233 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋 ∧ (𝐹𝑘) ∈ 𝑋) → ((𝐹𝑗)𝐷(𝐹𝑘)) = ((𝐹𝑘)𝐷(𝐹𝑗)))
109fveq2d 6826 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋 ∧ (𝐹𝑘) ∈ 𝑋) → ( I ‘((𝐹𝑗)𝐷(𝐹𝑘))) = ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))))
11 xmetsym 24233 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑚) ∈ 𝑋 ∧ (𝐹𝑗) ∈ 𝑋) → ((𝐹𝑚)𝐷(𝐹𝑗)) = ((𝐹𝑗)𝐷(𝐹𝑚)))
1211fveq2d 6826 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑚) ∈ 𝑋 ∧ (𝐹𝑗) ∈ 𝑋) → ( I ‘((𝐹𝑚)𝐷(𝐹𝑗))) = ( I ‘((𝐹𝑗)𝐷(𝐹𝑚))))
13 simp1 1136 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → 𝐷 ∈ (∞Met‘𝑋))
14 simp2l 1200 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → (𝐹𝑘) ∈ 𝑋)
15 simp3l 1202 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → (𝐹𝑗) ∈ 𝑋)
16 xmetcl 24217 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑗) ∈ 𝑋) → ((𝐹𝑘)𝐷(𝐹𝑗)) ∈ ℝ*)
1713, 14, 15, 16syl3anc 1373 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((𝐹𝑘)𝐷(𝐹𝑗)) ∈ ℝ*)
18 simp2r 1201 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → (𝐹𝑚) ∈ 𝑋)
19 xmetcl 24217 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) → ((𝐹𝑗)𝐷(𝐹𝑚)) ∈ ℝ*)
2013, 15, 18, 19syl3anc 1373 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((𝐹𝑗)𝐷(𝐹𝑚)) ∈ ℝ*)
21 simp3r 1203 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → 𝑥 ∈ ℝ)
2221rehalfcld 12371 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → (𝑥 / 2) ∈ ℝ)
2322rexrd 11165 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → (𝑥 / 2) ∈ ℝ*)
24 xlt2add 13162 . . . . . . . . . 10 (((((𝐹𝑘)𝐷(𝐹𝑗)) ∈ ℝ* ∧ ((𝐹𝑗)𝐷(𝐹𝑚)) ∈ ℝ*) ∧ ((𝑥 / 2) ∈ ℝ* ∧ (𝑥 / 2) ∈ ℝ*)) → ((((𝐹𝑘)𝐷(𝐹𝑗)) < (𝑥 / 2) ∧ ((𝐹𝑗)𝐷(𝐹𝑚)) < (𝑥 / 2)) → (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) < ((𝑥 / 2) +𝑒 (𝑥 / 2))))
2517, 20, 23, 23, 24syl22anc 838 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((((𝐹𝑘)𝐷(𝐹𝑗)) < (𝑥 / 2) ∧ ((𝐹𝑗)𝐷(𝐹𝑚)) < (𝑥 / 2)) → (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) < ((𝑥 / 2) +𝑒 (𝑥 / 2))))
2622, 22rexaddd 13136 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((𝑥 / 2) +𝑒 (𝑥 / 2)) = ((𝑥 / 2) + (𝑥 / 2)))
2721recnd 11143 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → 𝑥 ∈ ℂ)
28272halvesd 12370 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((𝑥 / 2) + (𝑥 / 2)) = 𝑥)
2926, 28eqtrd 2764 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((𝑥 / 2) +𝑒 (𝑥 / 2)) = 𝑥)
3029breq2d 5104 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) < ((𝑥 / 2) +𝑒 (𝑥 / 2)) ↔ (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥))
31 xmettri 24237 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋 ∧ (𝐹𝑗) ∈ 𝑋)) → ((𝐹𝑘)𝐷(𝐹𝑚)) ≤ (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))))
3213, 14, 18, 15, 31syl13anc 1374 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((𝐹𝑘)𝐷(𝐹𝑚)) ≤ (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))))
33 xmetcl 24217 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) → ((𝐹𝑘)𝐷(𝐹𝑚)) ∈ ℝ*)
3413, 14, 18, 33syl3anc 1373 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((𝐹𝑘)𝐷(𝐹𝑚)) ∈ ℝ*)
3517, 20xaddcld 13203 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) ∈ ℝ*)
3621rexrd 11165 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → 𝑥 ∈ ℝ*)
37 xrlelttr 13058 . . . . . . . . . . . 12 ((((𝐹𝑘)𝐷(𝐹𝑚)) ∈ ℝ* ∧ (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) ∈ ℝ*𝑥 ∈ ℝ*) → ((((𝐹𝑘)𝐷(𝐹𝑚)) ≤ (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) ∧ (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
3834, 35, 36, 37syl3anc 1373 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((((𝐹𝑘)𝐷(𝐹𝑚)) ≤ (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) ∧ (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
3932, 38mpand 695 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥 → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
4030, 39sylbid 240 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) < ((𝑥 / 2) +𝑒 (𝑥 / 2)) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
4125, 40syld 47 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((((𝐹𝑘)𝐷(𝐹𝑗)) < (𝑥 / 2) ∧ ((𝐹𝑗)𝐷(𝐹𝑚)) < (𝑥 / 2)) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
42 ovex 7382 . . . . . . . . . . 11 ((𝐹𝑘)𝐷(𝐹𝑗)) ∈ V
43 fvi 6899 . . . . . . . . . . 11 (((𝐹𝑘)𝐷(𝐹𝑗)) ∈ V → ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) = ((𝐹𝑘)𝐷(𝐹𝑗)))
4442, 43ax-mp 5 . . . . . . . . . 10 ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) = ((𝐹𝑘)𝐷(𝐹𝑗))
4544breq1i 5099 . . . . . . . . 9 (( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) ↔ ((𝐹𝑘)𝐷(𝐹𝑗)) < (𝑥 / 2))
46 ovex 7382 . . . . . . . . . . 11 ((𝐹𝑗)𝐷(𝐹𝑚)) ∈ V
47 fvi 6899 . . . . . . . . . . 11 (((𝐹𝑗)𝐷(𝐹𝑚)) ∈ V → ( I ‘((𝐹𝑗)𝐷(𝐹𝑚))) = ((𝐹𝑗)𝐷(𝐹𝑚)))
4846, 47ax-mp 5 . . . . . . . . . 10 ( I ‘((𝐹𝑗)𝐷(𝐹𝑚))) = ((𝐹𝑗)𝐷(𝐹𝑚))
4948breq1i 5099 . . . . . . . . 9 (( I ‘((𝐹𝑗)𝐷(𝐹𝑚))) < (𝑥 / 2) ↔ ((𝐹𝑗)𝐷(𝐹𝑚)) < (𝑥 / 2))
5045, 49anbi12i 628 . . . . . . . 8 ((( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) ∧ ( I ‘((𝐹𝑗)𝐷(𝐹𝑚))) < (𝑥 / 2)) ↔ (((𝐹𝑘)𝐷(𝐹𝑗)) < (𝑥 / 2) ∧ ((𝐹𝑗)𝐷(𝐹𝑚)) < (𝑥 / 2)))
51 ovex 7382 . . . . . . . . . 10 ((𝐹𝑘)𝐷(𝐹𝑚)) ∈ V
52 fvi 6899 . . . . . . . . . 10 (((𝐹𝑘)𝐷(𝐹𝑚)) ∈ V → ( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) = ((𝐹𝑘)𝐷(𝐹𝑚)))
5351, 52ax-mp 5 . . . . . . . . 9 ( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) = ((𝐹𝑘)𝐷(𝐹𝑚))
5453breq1i 5099 . . . . . . . 8 (( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥 ↔ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)
5541, 50, 543imtr4g 296 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) ∧ ( I ‘((𝐹𝑗)𝐷(𝐹𝑚))) < (𝑥 / 2)) → ( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
565, 6, 7, 8, 10, 12, 55cau3lem 15262 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → (∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
574, 56syl 17 . . . . 5 ((𝜑𝐹 ∈ (𝑋pm ℂ)) → (∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
5844breq1i 5099 . . . . . . . . . 10 (( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥 ↔ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)
5958anbi2i 623 . . . . . . . . 9 (((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
60 df-3an 1088 . . . . . . . . 9 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
6159, 60bitr4i 278 . . . . . . . 8 (((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
6261ralbii 3075 . . . . . . 7 (∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
6362rexbii 3076 . . . . . 6 (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
6463ralbii 3075 . . . . 5 (∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
6554ralbii 3075 . . . . . . . . . 10 (∀𝑚 ∈ (ℤ𝑘)( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥 ↔ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)
6665anbi2i 623 . . . . . . . . 9 (((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
67 df-3an 1088 . . . . . . . . 9 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
6866, 67bitr4i 278 . . . . . . . 8 (((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
6968ralbii 3075 . . . . . . 7 (∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
7069rexbii 3076 . . . . . 6 (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
7170ralbii 3075 . . . . 5 (∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
7257, 64, 713bitr3g 313 . . . 4 ((𝜑𝐹 ∈ (𝑋pm ℂ)) → (∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
73 iscau3.4 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
7473adantr 480 . . . . . 6 ((𝜑𝐹 ∈ (𝑋pm ℂ)) → 𝑀 ∈ ℤ)
75 iscau3.2 . . . . . . 7 𝑍 = (ℤ𝑀)
7675rexuz3 15256 . . . . . 6 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
7774, 76syl 17 . . . . 5 ((𝜑𝐹 ∈ (𝑋pm ℂ)) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
7877ralbidv 3152 . . . 4 ((𝜑𝐹 ∈ (𝑋pm ℂ)) → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
7972, 78bitr4d 282 . . 3 ((𝜑𝐹 ∈ (𝑋pm ℂ)) → (∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
8079pm5.32da 579 . 2 (𝜑 → ((𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))))
813, 80bitrd 279 1 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3436   class class class wbr 5092   I cid 5513  dom cdm 5619  cfv 6482  (class class class)co 7349  pm cpm 8754  cc 11007  cr 11008   + caddc 11012  *cxr 11148   < clt 11149  cle 11150   / cdiv 11777  2c2 12183  cz 12471  cuz 12735  +crp 12893   +𝑒 cxad 13012  ∞Metcxmet 21246  Cauccau 25151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-z 12472  df-uz 12736  df-rp 12894  df-xneg 13014  df-xadd 13015  df-psmet 21253  df-xmet 21254  df-bl 21256  df-cau 25154
This theorem is referenced by:  iscau4  25177  caucfil  25181  cmetcaulem  25186  heibor1lem  37789
  Copyright terms: Public domain W3C validator