Proof of Theorem iscau3
Step | Hyp | Ref
| Expression |
1 | | iscau3.3 |
. . 3
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
2 | | iscau2 24346 |
. . 3
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)))) |
3 | 1, 2 | syl 17 |
. 2
⊢ (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)))) |
4 | 1 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐹 ∈ (𝑋 ↑pm ℂ)) → 𝐷 ∈ (∞Met‘𝑋)) |
5 | | ssid 3939 |
. . . . . . 7
⊢ ℤ
⊆ ℤ |
6 | | simpr 484 |
. . . . . . 7
⊢ ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) → (𝐹‘𝑘) ∈ 𝑋) |
7 | | eleq1 2826 |
. . . . . . 7
⊢ ((𝐹‘𝑘) = (𝐹‘𝑗) → ((𝐹‘𝑘) ∈ 𝑋 ↔ (𝐹‘𝑗) ∈ 𝑋)) |
8 | | eleq1 2826 |
. . . . . . 7
⊢ ((𝐹‘𝑘) = (𝐹‘𝑚) → ((𝐹‘𝑘) ∈ 𝑋 ↔ (𝐹‘𝑚) ∈ 𝑋)) |
9 | | xmetsym 23408 |
. . . . . . . 8
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹‘𝑗) ∈ 𝑋 ∧ (𝐹‘𝑘) ∈ 𝑋) → ((𝐹‘𝑗)𝐷(𝐹‘𝑘)) = ((𝐹‘𝑘)𝐷(𝐹‘𝑗))) |
10 | 9 | fveq2d 6760 |
. . . . . . 7
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹‘𝑗) ∈ 𝑋 ∧ (𝐹‘𝑘) ∈ 𝑋) → ( I ‘((𝐹‘𝑗)𝐷(𝐹‘𝑘))) = ( I ‘((𝐹‘𝑘)𝐷(𝐹‘𝑗)))) |
11 | | xmetsym 23408 |
. . . . . . . 8
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹‘𝑚) ∈ 𝑋 ∧ (𝐹‘𝑗) ∈ 𝑋) → ((𝐹‘𝑚)𝐷(𝐹‘𝑗)) = ((𝐹‘𝑗)𝐷(𝐹‘𝑚))) |
12 | 11 | fveq2d 6760 |
. . . . . . 7
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹‘𝑚) ∈ 𝑋 ∧ (𝐹‘𝑗) ∈ 𝑋) → ( I ‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) = ( I ‘((𝐹‘𝑗)𝐷(𝐹‘𝑚)))) |
13 | | simp1 1134 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹‘𝑘) ∈ 𝑋 ∧ (𝐹‘𝑚) ∈ 𝑋) ∧ ((𝐹‘𝑗) ∈ 𝑋 ∧ 𝑥 ∈ ℝ)) → 𝐷 ∈ (∞Met‘𝑋)) |
14 | | simp2l 1197 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹‘𝑘) ∈ 𝑋 ∧ (𝐹‘𝑚) ∈ 𝑋) ∧ ((𝐹‘𝑗) ∈ 𝑋 ∧ 𝑥 ∈ ℝ)) → (𝐹‘𝑘) ∈ 𝑋) |
15 | | simp3l 1199 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹‘𝑘) ∈ 𝑋 ∧ (𝐹‘𝑚) ∈ 𝑋) ∧ ((𝐹‘𝑗) ∈ 𝑋 ∧ 𝑥 ∈ ℝ)) → (𝐹‘𝑗) ∈ 𝑋) |
16 | | xmetcl 23392 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ (𝐹‘𝑗) ∈ 𝑋) → ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) ∈
ℝ*) |
17 | 13, 14, 15, 16 | syl3anc 1369 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹‘𝑘) ∈ 𝑋 ∧ (𝐹‘𝑚) ∈ 𝑋) ∧ ((𝐹‘𝑗) ∈ 𝑋 ∧ 𝑥 ∈ ℝ)) → ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) ∈
ℝ*) |
18 | | simp2r 1198 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹‘𝑘) ∈ 𝑋 ∧ (𝐹‘𝑚) ∈ 𝑋) ∧ ((𝐹‘𝑗) ∈ 𝑋 ∧ 𝑥 ∈ ℝ)) → (𝐹‘𝑚) ∈ 𝑋) |
19 | | xmetcl 23392 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹‘𝑗) ∈ 𝑋 ∧ (𝐹‘𝑚) ∈ 𝑋) → ((𝐹‘𝑗)𝐷(𝐹‘𝑚)) ∈
ℝ*) |
20 | 13, 15, 18, 19 | syl3anc 1369 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹‘𝑘) ∈ 𝑋 ∧ (𝐹‘𝑚) ∈ 𝑋) ∧ ((𝐹‘𝑗) ∈ 𝑋 ∧ 𝑥 ∈ ℝ)) → ((𝐹‘𝑗)𝐷(𝐹‘𝑚)) ∈
ℝ*) |
21 | | simp3r 1200 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹‘𝑘) ∈ 𝑋 ∧ (𝐹‘𝑚) ∈ 𝑋) ∧ ((𝐹‘𝑗) ∈ 𝑋 ∧ 𝑥 ∈ ℝ)) → 𝑥 ∈ ℝ) |
22 | 21 | rehalfcld 12150 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹‘𝑘) ∈ 𝑋 ∧ (𝐹‘𝑚) ∈ 𝑋) ∧ ((𝐹‘𝑗) ∈ 𝑋 ∧ 𝑥 ∈ ℝ)) → (𝑥 / 2) ∈ ℝ) |
23 | 22 | rexrd 10956 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹‘𝑘) ∈ 𝑋 ∧ (𝐹‘𝑚) ∈ 𝑋) ∧ ((𝐹‘𝑗) ∈ 𝑋 ∧ 𝑥 ∈ ℝ)) → (𝑥 / 2) ∈
ℝ*) |
24 | | xlt2add 12923 |
. . . . . . . . . 10
⊢
(((((𝐹‘𝑘)𝐷(𝐹‘𝑗)) ∈ ℝ* ∧ ((𝐹‘𝑗)𝐷(𝐹‘𝑚)) ∈ ℝ*) ∧ ((𝑥 / 2) ∈ ℝ*
∧ (𝑥 / 2) ∈
ℝ*)) → ((((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < (𝑥 / 2) ∧ ((𝐹‘𝑗)𝐷(𝐹‘𝑚)) < (𝑥 / 2)) → (((𝐹‘𝑘)𝐷(𝐹‘𝑗)) +𝑒 ((𝐹‘𝑗)𝐷(𝐹‘𝑚))) < ((𝑥 / 2) +𝑒 (𝑥 / 2)))) |
25 | 17, 20, 23, 23, 24 | syl22anc 835 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹‘𝑘) ∈ 𝑋 ∧ (𝐹‘𝑚) ∈ 𝑋) ∧ ((𝐹‘𝑗) ∈ 𝑋 ∧ 𝑥 ∈ ℝ)) → ((((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < (𝑥 / 2) ∧ ((𝐹‘𝑗)𝐷(𝐹‘𝑚)) < (𝑥 / 2)) → (((𝐹‘𝑘)𝐷(𝐹‘𝑗)) +𝑒 ((𝐹‘𝑗)𝐷(𝐹‘𝑚))) < ((𝑥 / 2) +𝑒 (𝑥 / 2)))) |
26 | 22, 22 | rexaddd 12897 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹‘𝑘) ∈ 𝑋 ∧ (𝐹‘𝑚) ∈ 𝑋) ∧ ((𝐹‘𝑗) ∈ 𝑋 ∧ 𝑥 ∈ ℝ)) → ((𝑥 / 2) +𝑒 (𝑥 / 2)) = ((𝑥 / 2) + (𝑥 / 2))) |
27 | 21 | recnd 10934 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹‘𝑘) ∈ 𝑋 ∧ (𝐹‘𝑚) ∈ 𝑋) ∧ ((𝐹‘𝑗) ∈ 𝑋 ∧ 𝑥 ∈ ℝ)) → 𝑥 ∈ ℂ) |
28 | 27 | 2halvesd 12149 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹‘𝑘) ∈ 𝑋 ∧ (𝐹‘𝑚) ∈ 𝑋) ∧ ((𝐹‘𝑗) ∈ 𝑋 ∧ 𝑥 ∈ ℝ)) → ((𝑥 / 2) + (𝑥 / 2)) = 𝑥) |
29 | 26, 28 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹‘𝑘) ∈ 𝑋 ∧ (𝐹‘𝑚) ∈ 𝑋) ∧ ((𝐹‘𝑗) ∈ 𝑋 ∧ 𝑥 ∈ ℝ)) → ((𝑥 / 2) +𝑒 (𝑥 / 2)) = 𝑥) |
30 | 29 | breq2d 5082 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹‘𝑘) ∈ 𝑋 ∧ (𝐹‘𝑚) ∈ 𝑋) ∧ ((𝐹‘𝑗) ∈ 𝑋 ∧ 𝑥 ∈ ℝ)) → ((((𝐹‘𝑘)𝐷(𝐹‘𝑗)) +𝑒 ((𝐹‘𝑗)𝐷(𝐹‘𝑚))) < ((𝑥 / 2) +𝑒 (𝑥 / 2)) ↔ (((𝐹‘𝑘)𝐷(𝐹‘𝑗)) +𝑒 ((𝐹‘𝑗)𝐷(𝐹‘𝑚))) < 𝑥)) |
31 | | xmettri 23412 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹‘𝑘) ∈ 𝑋 ∧ (𝐹‘𝑚) ∈ 𝑋 ∧ (𝐹‘𝑗) ∈ 𝑋)) → ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) ≤ (((𝐹‘𝑘)𝐷(𝐹‘𝑗)) +𝑒 ((𝐹‘𝑗)𝐷(𝐹‘𝑚)))) |
32 | 13, 14, 18, 15, 31 | syl13anc 1370 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹‘𝑘) ∈ 𝑋 ∧ (𝐹‘𝑚) ∈ 𝑋) ∧ ((𝐹‘𝑗) ∈ 𝑋 ∧ 𝑥 ∈ ℝ)) → ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) ≤ (((𝐹‘𝑘)𝐷(𝐹‘𝑗)) +𝑒 ((𝐹‘𝑗)𝐷(𝐹‘𝑚)))) |
33 | | xmetcl 23392 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ (𝐹‘𝑚) ∈ 𝑋) → ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) ∈
ℝ*) |
34 | 13, 14, 18, 33 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹‘𝑘) ∈ 𝑋 ∧ (𝐹‘𝑚) ∈ 𝑋) ∧ ((𝐹‘𝑗) ∈ 𝑋 ∧ 𝑥 ∈ ℝ)) → ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) ∈
ℝ*) |
35 | 17, 20 | xaddcld 12964 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹‘𝑘) ∈ 𝑋 ∧ (𝐹‘𝑚) ∈ 𝑋) ∧ ((𝐹‘𝑗) ∈ 𝑋 ∧ 𝑥 ∈ ℝ)) → (((𝐹‘𝑘)𝐷(𝐹‘𝑗)) +𝑒 ((𝐹‘𝑗)𝐷(𝐹‘𝑚))) ∈
ℝ*) |
36 | 21 | rexrd 10956 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹‘𝑘) ∈ 𝑋 ∧ (𝐹‘𝑚) ∈ 𝑋) ∧ ((𝐹‘𝑗) ∈ 𝑋 ∧ 𝑥 ∈ ℝ)) → 𝑥 ∈ ℝ*) |
37 | | xrlelttr 12819 |
. . . . . . . . . . . 12
⊢ ((((𝐹‘𝑘)𝐷(𝐹‘𝑚)) ∈ ℝ* ∧ (((𝐹‘𝑘)𝐷(𝐹‘𝑗)) +𝑒 ((𝐹‘𝑗)𝐷(𝐹‘𝑚))) ∈ ℝ* ∧ 𝑥 ∈ ℝ*)
→ ((((𝐹‘𝑘)𝐷(𝐹‘𝑚)) ≤ (((𝐹‘𝑘)𝐷(𝐹‘𝑗)) +𝑒 ((𝐹‘𝑗)𝐷(𝐹‘𝑚))) ∧ (((𝐹‘𝑘)𝐷(𝐹‘𝑗)) +𝑒 ((𝐹‘𝑗)𝐷(𝐹‘𝑚))) < 𝑥) → ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥)) |
38 | 34, 35, 36, 37 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹‘𝑘) ∈ 𝑋 ∧ (𝐹‘𝑚) ∈ 𝑋) ∧ ((𝐹‘𝑗) ∈ 𝑋 ∧ 𝑥 ∈ ℝ)) → ((((𝐹‘𝑘)𝐷(𝐹‘𝑚)) ≤ (((𝐹‘𝑘)𝐷(𝐹‘𝑗)) +𝑒 ((𝐹‘𝑗)𝐷(𝐹‘𝑚))) ∧ (((𝐹‘𝑘)𝐷(𝐹‘𝑗)) +𝑒 ((𝐹‘𝑗)𝐷(𝐹‘𝑚))) < 𝑥) → ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥)) |
39 | 32, 38 | mpand 691 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹‘𝑘) ∈ 𝑋 ∧ (𝐹‘𝑚) ∈ 𝑋) ∧ ((𝐹‘𝑗) ∈ 𝑋 ∧ 𝑥 ∈ ℝ)) → ((((𝐹‘𝑘)𝐷(𝐹‘𝑗)) +𝑒 ((𝐹‘𝑗)𝐷(𝐹‘𝑚))) < 𝑥 → ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥)) |
40 | 30, 39 | sylbid 239 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹‘𝑘) ∈ 𝑋 ∧ (𝐹‘𝑚) ∈ 𝑋) ∧ ((𝐹‘𝑗) ∈ 𝑋 ∧ 𝑥 ∈ ℝ)) → ((((𝐹‘𝑘)𝐷(𝐹‘𝑗)) +𝑒 ((𝐹‘𝑗)𝐷(𝐹‘𝑚))) < ((𝑥 / 2) +𝑒 (𝑥 / 2)) → ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥)) |
41 | 25, 40 | syld 47 |
. . . . . . . 8
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹‘𝑘) ∈ 𝑋 ∧ (𝐹‘𝑚) ∈ 𝑋) ∧ ((𝐹‘𝑗) ∈ 𝑋 ∧ 𝑥 ∈ ℝ)) → ((((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < (𝑥 / 2) ∧ ((𝐹‘𝑗)𝐷(𝐹‘𝑚)) < (𝑥 / 2)) → ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥)) |
42 | | ovex 7288 |
. . . . . . . . . . 11
⊢ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) ∈ V |
43 | | fvi 6826 |
. . . . . . . . . . 11
⊢ (((𝐹‘𝑘)𝐷(𝐹‘𝑗)) ∈ V → ( I ‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) = ((𝐹‘𝑘)𝐷(𝐹‘𝑗))) |
44 | 42, 43 | ax-mp 5 |
. . . . . . . . . 10
⊢ ( I
‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) = ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) |
45 | 44 | breq1i 5077 |
. . . . . . . . 9
⊢ (( I
‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2) ↔ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < (𝑥 / 2)) |
46 | | ovex 7288 |
. . . . . . . . . . 11
⊢ ((𝐹‘𝑗)𝐷(𝐹‘𝑚)) ∈ V |
47 | | fvi 6826 |
. . . . . . . . . . 11
⊢ (((𝐹‘𝑗)𝐷(𝐹‘𝑚)) ∈ V → ( I ‘((𝐹‘𝑗)𝐷(𝐹‘𝑚))) = ((𝐹‘𝑗)𝐷(𝐹‘𝑚))) |
48 | 46, 47 | ax-mp 5 |
. . . . . . . . . 10
⊢ ( I
‘((𝐹‘𝑗)𝐷(𝐹‘𝑚))) = ((𝐹‘𝑗)𝐷(𝐹‘𝑚)) |
49 | 48 | breq1i 5077 |
. . . . . . . . 9
⊢ (( I
‘((𝐹‘𝑗)𝐷(𝐹‘𝑚))) < (𝑥 / 2) ↔ ((𝐹‘𝑗)𝐷(𝐹‘𝑚)) < (𝑥 / 2)) |
50 | 45, 49 | anbi12i 626 |
. . . . . . . 8
⊢ ((( I
‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2) ∧ ( I ‘((𝐹‘𝑗)𝐷(𝐹‘𝑚))) < (𝑥 / 2)) ↔ (((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < (𝑥 / 2) ∧ ((𝐹‘𝑗)𝐷(𝐹‘𝑚)) < (𝑥 / 2))) |
51 | | ovex 7288 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) ∈ V |
52 | | fvi 6826 |
. . . . . . . . . 10
⊢ (((𝐹‘𝑘)𝐷(𝐹‘𝑚)) ∈ V → ( I ‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) = ((𝐹‘𝑘)𝐷(𝐹‘𝑚))) |
53 | 51, 52 | ax-mp 5 |
. . . . . . . . 9
⊢ ( I
‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) = ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) |
54 | 53 | breq1i 5077 |
. . . . . . . 8
⊢ (( I
‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥 ↔ ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥) |
55 | 41, 50, 54 | 3imtr4g 295 |
. . . . . . 7
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹‘𝑘) ∈ 𝑋 ∧ (𝐹‘𝑚) ∈ 𝑋) ∧ ((𝐹‘𝑗) ∈ 𝑋 ∧ 𝑥 ∈ ℝ)) → ((( I ‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2) ∧ ( I ‘((𝐹‘𝑗)𝐷(𝐹‘𝑚))) < (𝑥 / 2)) → ( I ‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥)) |
56 | 5, 6, 7, 8, 10, 12, 55 | cau3lem 14994 |
. . . . . 6
⊢ (𝐷 ∈ (∞Met‘𝑋) → (∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ( I ‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)( I ‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥))) |
57 | 4, 56 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝐹 ∈ (𝑋 ↑pm ℂ)) →
(∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ( I ‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)( I ‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥))) |
58 | 44 | breq1i 5077 |
. . . . . . . . . 10
⊢ (( I
‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥 ↔ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥) |
59 | 58 | anbi2i 622 |
. . . . . . . . 9
⊢ (((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ( I ‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥) ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)) |
60 | | df-3an 1087 |
. . . . . . . . 9
⊢ ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥) ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)) |
61 | 59, 60 | bitr4i 277 |
. . . . . . . 8
⊢ (((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ( I ‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)) |
62 | 61 | ralbii 3090 |
. . . . . . 7
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ( I ‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)) |
63 | 62 | rexbii 3177 |
. . . . . 6
⊢
(∃𝑗 ∈
ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ( I ‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)) |
64 | 63 | ralbii 3090 |
. . . . 5
⊢
(∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ( I ‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)) |
65 | 54 | ralbii 3090 |
. . . . . . . . . 10
⊢
(∀𝑚 ∈
(ℤ≥‘𝑘)( I ‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥 ↔ ∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥) |
66 | 65 | anbi2i 622 |
. . . . . . . . 9
⊢ (((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)( I ‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥) ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥)) |
67 | | df-3an 1087 |
. . . . . . . . 9
⊢ ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥) ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥)) |
68 | 66, 67 | bitr4i 277 |
. . . . . . . 8
⊢ (((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)( I ‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥)) |
69 | 68 | ralbii 3090 |
. . . . . . 7
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)( I ‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥)) |
70 | 69 | rexbii 3177 |
. . . . . 6
⊢
(∃𝑗 ∈
ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)( I ‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥)) |
71 | 70 | ralbii 3090 |
. . . . 5
⊢
(∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)( I ‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥)) |
72 | 57, 64, 71 | 3bitr3g 312 |
. . . 4
⊢ ((𝜑 ∧ 𝐹 ∈ (𝑋 ↑pm ℂ)) →
(∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥))) |
73 | | iscau3.4 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℤ) |
74 | 73 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐹 ∈ (𝑋 ↑pm ℂ)) → 𝑀 ∈
ℤ) |
75 | | iscau3.2 |
. . . . . . 7
⊢ 𝑍 =
(ℤ≥‘𝑀) |
76 | 75 | rexuz3 14988 |
. . . . . 6
⊢ (𝑀 ∈ ℤ →
(∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥))) |
77 | 74, 76 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝐹 ∈ (𝑋 ↑pm ℂ)) →
(∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥))) |
78 | 77 | ralbidv 3120 |
. . . 4
⊢ ((𝜑 ∧ 𝐹 ∈ (𝑋 ↑pm ℂ)) →
(∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥))) |
79 | 72, 78 | bitr4d 281 |
. . 3
⊢ ((𝜑 ∧ 𝐹 ∈ (𝑋 ↑pm ℂ)) →
(∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥))) |
80 | 79 | pm5.32da 578 |
. 2
⊢ (𝜑 → ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥)))) |
81 | 3, 80 | bitrd 278 |
1
⊢ (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥)))) |