MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscau3 Structured version   Visualization version   GIF version

Theorem iscau3 24347
Description: Express the Cauchy sequence property in the more conventional three-quantifier form. (Contributed by NM, 19-Dec-2006.) (Revised by Mario Carneiro, 14-Nov-2013.)
Hypotheses
Ref Expression
iscau3.2 𝑍 = (ℤ𝑀)
iscau3.3 (𝜑𝐷 ∈ (∞Met‘𝑋))
iscau3.4 (𝜑𝑀 ∈ ℤ)
Assertion
Ref Expression
iscau3 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))))
Distinct variable groups:   𝑗,𝑘,𝑚,𝑥,𝐷   𝑗,𝐹,𝑘,𝑚,𝑥   𝜑,𝑗,𝑘,𝑥   𝑗,𝑋,𝑘,𝑚,𝑥   𝑗,𝑀   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑚)   𝑀(𝑥,𝑘,𝑚)   𝑍(𝑚)

Proof of Theorem iscau3
StepHypRef Expression
1 iscau3.3 . . 3 (𝜑𝐷 ∈ (∞Met‘𝑋))
2 iscau2 24346 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
31, 2syl 17 . 2 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
41adantr 480 . . . . . 6 ((𝜑𝐹 ∈ (𝑋pm ℂ)) → 𝐷 ∈ (∞Met‘𝑋))
5 ssid 3939 . . . . . . 7 ℤ ⊆ ℤ
6 simpr 484 . . . . . . 7 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) → (𝐹𝑘) ∈ 𝑋)
7 eleq1 2826 . . . . . . 7 ((𝐹𝑘) = (𝐹𝑗) → ((𝐹𝑘) ∈ 𝑋 ↔ (𝐹𝑗) ∈ 𝑋))
8 eleq1 2826 . . . . . . 7 ((𝐹𝑘) = (𝐹𝑚) → ((𝐹𝑘) ∈ 𝑋 ↔ (𝐹𝑚) ∈ 𝑋))
9 xmetsym 23408 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋 ∧ (𝐹𝑘) ∈ 𝑋) → ((𝐹𝑗)𝐷(𝐹𝑘)) = ((𝐹𝑘)𝐷(𝐹𝑗)))
109fveq2d 6760 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋 ∧ (𝐹𝑘) ∈ 𝑋) → ( I ‘((𝐹𝑗)𝐷(𝐹𝑘))) = ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))))
11 xmetsym 23408 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑚) ∈ 𝑋 ∧ (𝐹𝑗) ∈ 𝑋) → ((𝐹𝑚)𝐷(𝐹𝑗)) = ((𝐹𝑗)𝐷(𝐹𝑚)))
1211fveq2d 6760 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑚) ∈ 𝑋 ∧ (𝐹𝑗) ∈ 𝑋) → ( I ‘((𝐹𝑚)𝐷(𝐹𝑗))) = ( I ‘((𝐹𝑗)𝐷(𝐹𝑚))))
13 simp1 1134 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → 𝐷 ∈ (∞Met‘𝑋))
14 simp2l 1197 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → (𝐹𝑘) ∈ 𝑋)
15 simp3l 1199 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → (𝐹𝑗) ∈ 𝑋)
16 xmetcl 23392 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑗) ∈ 𝑋) → ((𝐹𝑘)𝐷(𝐹𝑗)) ∈ ℝ*)
1713, 14, 15, 16syl3anc 1369 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((𝐹𝑘)𝐷(𝐹𝑗)) ∈ ℝ*)
18 simp2r 1198 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → (𝐹𝑚) ∈ 𝑋)
19 xmetcl 23392 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) → ((𝐹𝑗)𝐷(𝐹𝑚)) ∈ ℝ*)
2013, 15, 18, 19syl3anc 1369 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((𝐹𝑗)𝐷(𝐹𝑚)) ∈ ℝ*)
21 simp3r 1200 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → 𝑥 ∈ ℝ)
2221rehalfcld 12150 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → (𝑥 / 2) ∈ ℝ)
2322rexrd 10956 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → (𝑥 / 2) ∈ ℝ*)
24 xlt2add 12923 . . . . . . . . . 10 (((((𝐹𝑘)𝐷(𝐹𝑗)) ∈ ℝ* ∧ ((𝐹𝑗)𝐷(𝐹𝑚)) ∈ ℝ*) ∧ ((𝑥 / 2) ∈ ℝ* ∧ (𝑥 / 2) ∈ ℝ*)) → ((((𝐹𝑘)𝐷(𝐹𝑗)) < (𝑥 / 2) ∧ ((𝐹𝑗)𝐷(𝐹𝑚)) < (𝑥 / 2)) → (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) < ((𝑥 / 2) +𝑒 (𝑥 / 2))))
2517, 20, 23, 23, 24syl22anc 835 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((((𝐹𝑘)𝐷(𝐹𝑗)) < (𝑥 / 2) ∧ ((𝐹𝑗)𝐷(𝐹𝑚)) < (𝑥 / 2)) → (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) < ((𝑥 / 2) +𝑒 (𝑥 / 2))))
2622, 22rexaddd 12897 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((𝑥 / 2) +𝑒 (𝑥 / 2)) = ((𝑥 / 2) + (𝑥 / 2)))
2721recnd 10934 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → 𝑥 ∈ ℂ)
28272halvesd 12149 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((𝑥 / 2) + (𝑥 / 2)) = 𝑥)
2926, 28eqtrd 2778 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((𝑥 / 2) +𝑒 (𝑥 / 2)) = 𝑥)
3029breq2d 5082 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) < ((𝑥 / 2) +𝑒 (𝑥 / 2)) ↔ (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥))
31 xmettri 23412 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋 ∧ (𝐹𝑗) ∈ 𝑋)) → ((𝐹𝑘)𝐷(𝐹𝑚)) ≤ (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))))
3213, 14, 18, 15, 31syl13anc 1370 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((𝐹𝑘)𝐷(𝐹𝑚)) ≤ (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))))
33 xmetcl 23392 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) → ((𝐹𝑘)𝐷(𝐹𝑚)) ∈ ℝ*)
3413, 14, 18, 33syl3anc 1369 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((𝐹𝑘)𝐷(𝐹𝑚)) ∈ ℝ*)
3517, 20xaddcld 12964 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) ∈ ℝ*)
3621rexrd 10956 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → 𝑥 ∈ ℝ*)
37 xrlelttr 12819 . . . . . . . . . . . 12 ((((𝐹𝑘)𝐷(𝐹𝑚)) ∈ ℝ* ∧ (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) ∈ ℝ*𝑥 ∈ ℝ*) → ((((𝐹𝑘)𝐷(𝐹𝑚)) ≤ (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) ∧ (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
3834, 35, 36, 37syl3anc 1369 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((((𝐹𝑘)𝐷(𝐹𝑚)) ≤ (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) ∧ (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
3932, 38mpand 691 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥 → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
4030, 39sylbid 239 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) < ((𝑥 / 2) +𝑒 (𝑥 / 2)) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
4125, 40syld 47 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((((𝐹𝑘)𝐷(𝐹𝑗)) < (𝑥 / 2) ∧ ((𝐹𝑗)𝐷(𝐹𝑚)) < (𝑥 / 2)) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
42 ovex 7288 . . . . . . . . . . 11 ((𝐹𝑘)𝐷(𝐹𝑗)) ∈ V
43 fvi 6826 . . . . . . . . . . 11 (((𝐹𝑘)𝐷(𝐹𝑗)) ∈ V → ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) = ((𝐹𝑘)𝐷(𝐹𝑗)))
4442, 43ax-mp 5 . . . . . . . . . 10 ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) = ((𝐹𝑘)𝐷(𝐹𝑗))
4544breq1i 5077 . . . . . . . . 9 (( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) ↔ ((𝐹𝑘)𝐷(𝐹𝑗)) < (𝑥 / 2))
46 ovex 7288 . . . . . . . . . . 11 ((𝐹𝑗)𝐷(𝐹𝑚)) ∈ V
47 fvi 6826 . . . . . . . . . . 11 (((𝐹𝑗)𝐷(𝐹𝑚)) ∈ V → ( I ‘((𝐹𝑗)𝐷(𝐹𝑚))) = ((𝐹𝑗)𝐷(𝐹𝑚)))
4846, 47ax-mp 5 . . . . . . . . . 10 ( I ‘((𝐹𝑗)𝐷(𝐹𝑚))) = ((𝐹𝑗)𝐷(𝐹𝑚))
4948breq1i 5077 . . . . . . . . 9 (( I ‘((𝐹𝑗)𝐷(𝐹𝑚))) < (𝑥 / 2) ↔ ((𝐹𝑗)𝐷(𝐹𝑚)) < (𝑥 / 2))
5045, 49anbi12i 626 . . . . . . . 8 ((( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) ∧ ( I ‘((𝐹𝑗)𝐷(𝐹𝑚))) < (𝑥 / 2)) ↔ (((𝐹𝑘)𝐷(𝐹𝑗)) < (𝑥 / 2) ∧ ((𝐹𝑗)𝐷(𝐹𝑚)) < (𝑥 / 2)))
51 ovex 7288 . . . . . . . . . 10 ((𝐹𝑘)𝐷(𝐹𝑚)) ∈ V
52 fvi 6826 . . . . . . . . . 10 (((𝐹𝑘)𝐷(𝐹𝑚)) ∈ V → ( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) = ((𝐹𝑘)𝐷(𝐹𝑚)))
5351, 52ax-mp 5 . . . . . . . . 9 ( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) = ((𝐹𝑘)𝐷(𝐹𝑚))
5453breq1i 5077 . . . . . . . 8 (( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥 ↔ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)
5541, 50, 543imtr4g 295 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) ∧ ( I ‘((𝐹𝑗)𝐷(𝐹𝑚))) < (𝑥 / 2)) → ( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
565, 6, 7, 8, 10, 12, 55cau3lem 14994 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → (∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
574, 56syl 17 . . . . 5 ((𝜑𝐹 ∈ (𝑋pm ℂ)) → (∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
5844breq1i 5077 . . . . . . . . . 10 (( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥 ↔ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)
5958anbi2i 622 . . . . . . . . 9 (((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
60 df-3an 1087 . . . . . . . . 9 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
6159, 60bitr4i 277 . . . . . . . 8 (((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
6261ralbii 3090 . . . . . . 7 (∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
6362rexbii 3177 . . . . . 6 (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
6463ralbii 3090 . . . . 5 (∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
6554ralbii 3090 . . . . . . . . . 10 (∀𝑚 ∈ (ℤ𝑘)( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥 ↔ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)
6665anbi2i 622 . . . . . . . . 9 (((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
67 df-3an 1087 . . . . . . . . 9 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
6866, 67bitr4i 277 . . . . . . . 8 (((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
6968ralbii 3090 . . . . . . 7 (∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
7069rexbii 3177 . . . . . 6 (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
7170ralbii 3090 . . . . 5 (∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
7257, 64, 713bitr3g 312 . . . 4 ((𝜑𝐹 ∈ (𝑋pm ℂ)) → (∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
73 iscau3.4 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
7473adantr 480 . . . . . 6 ((𝜑𝐹 ∈ (𝑋pm ℂ)) → 𝑀 ∈ ℤ)
75 iscau3.2 . . . . . . 7 𝑍 = (ℤ𝑀)
7675rexuz3 14988 . . . . . 6 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
7774, 76syl 17 . . . . 5 ((𝜑𝐹 ∈ (𝑋pm ℂ)) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
7877ralbidv 3120 . . . 4 ((𝜑𝐹 ∈ (𝑋pm ℂ)) → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
7972, 78bitr4d 281 . . 3 ((𝜑𝐹 ∈ (𝑋pm ℂ)) → (∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
8079pm5.32da 578 . 2 (𝜑 → ((𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))))
813, 80bitrd 278 1 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  Vcvv 3422   class class class wbr 5070   I cid 5479  dom cdm 5580  cfv 6418  (class class class)co 7255  pm cpm 8574  cc 10800  cr 10801   + caddc 10805  *cxr 10939   < clt 10940  cle 10941   / cdiv 11562  2c2 11958  cz 12249  cuz 12511  +crp 12659   +𝑒 cxad 12775  ∞Metcxmet 20495  Cauccau 24322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-2 11966  df-z 12250  df-uz 12512  df-rp 12660  df-xneg 12777  df-xadd 12778  df-psmet 20502  df-xmet 20503  df-bl 20505  df-cau 24325
This theorem is referenced by:  iscau4  24348  caucfil  24352  cmetcaulem  24357  heibor1lem  35894
  Copyright terms: Public domain W3C validator