MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscau3 Structured version   Visualization version   GIF version

Theorem iscau3 23355
Description: Express the Cauchy sequence property in the more conventional three-quantifier form. (Contributed by NM, 19-Dec-2006.) (Revised by Mario Carneiro, 14-Nov-2013.)
Hypotheses
Ref Expression
iscau3.2 𝑍 = (ℤ𝑀)
iscau3.3 (𝜑𝐷 ∈ (∞Met‘𝑋))
iscau3.4 (𝜑𝑀 ∈ ℤ)
Assertion
Ref Expression
iscau3 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))))
Distinct variable groups:   𝑗,𝑘,𝑚,𝑥,𝐷   𝑗,𝐹,𝑘,𝑚,𝑥   𝜑,𝑗,𝑘,𝑥   𝑗,𝑋,𝑘,𝑚,𝑥   𝑗,𝑀   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑚)   𝑀(𝑥,𝑘,𝑚)   𝑍(𝑚)

Proof of Theorem iscau3
StepHypRef Expression
1 iscau3.3 . . 3 (𝜑𝐷 ∈ (∞Met‘𝑋))
2 iscau2 23354 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
31, 2syl 17 . 2 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))))
41adantr 472 . . . . . 6 ((𝜑𝐹 ∈ (𝑋pm ℂ)) → 𝐷 ∈ (∞Met‘𝑋))
5 ssid 3783 . . . . . . 7 ℤ ⊆ ℤ
6 simpr 477 . . . . . . 7 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) → (𝐹𝑘) ∈ 𝑋)
7 eleq1 2832 . . . . . . 7 ((𝐹𝑘) = (𝐹𝑗) → ((𝐹𝑘) ∈ 𝑋 ↔ (𝐹𝑗) ∈ 𝑋))
8 eleq1 2832 . . . . . . 7 ((𝐹𝑘) = (𝐹𝑚) → ((𝐹𝑘) ∈ 𝑋 ↔ (𝐹𝑚) ∈ 𝑋))
9 xmetsym 22431 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋 ∧ (𝐹𝑘) ∈ 𝑋) → ((𝐹𝑗)𝐷(𝐹𝑘)) = ((𝐹𝑘)𝐷(𝐹𝑗)))
109fveq2d 6379 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋 ∧ (𝐹𝑘) ∈ 𝑋) → ( I ‘((𝐹𝑗)𝐷(𝐹𝑘))) = ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))))
11 xmetsym 22431 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑚) ∈ 𝑋 ∧ (𝐹𝑗) ∈ 𝑋) → ((𝐹𝑚)𝐷(𝐹𝑗)) = ((𝐹𝑗)𝐷(𝐹𝑚)))
1211fveq2d 6379 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑚) ∈ 𝑋 ∧ (𝐹𝑗) ∈ 𝑋) → ( I ‘((𝐹𝑚)𝐷(𝐹𝑗))) = ( I ‘((𝐹𝑗)𝐷(𝐹𝑚))))
13 simp1 1166 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → 𝐷 ∈ (∞Met‘𝑋))
14 simp2l 1256 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → (𝐹𝑘) ∈ 𝑋)
15 simp3l 1258 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → (𝐹𝑗) ∈ 𝑋)
16 xmetcl 22415 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑗) ∈ 𝑋) → ((𝐹𝑘)𝐷(𝐹𝑗)) ∈ ℝ*)
1713, 14, 15, 16syl3anc 1490 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((𝐹𝑘)𝐷(𝐹𝑗)) ∈ ℝ*)
18 simp2r 1257 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → (𝐹𝑚) ∈ 𝑋)
19 xmetcl 22415 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) → ((𝐹𝑗)𝐷(𝐹𝑚)) ∈ ℝ*)
2013, 15, 18, 19syl3anc 1490 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((𝐹𝑗)𝐷(𝐹𝑚)) ∈ ℝ*)
21 simp3r 1259 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → 𝑥 ∈ ℝ)
2221rehalfcld 11525 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → (𝑥 / 2) ∈ ℝ)
2322rexrd 10343 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → (𝑥 / 2) ∈ ℝ*)
24 xlt2add 12292 . . . . . . . . . 10 (((((𝐹𝑘)𝐷(𝐹𝑗)) ∈ ℝ* ∧ ((𝐹𝑗)𝐷(𝐹𝑚)) ∈ ℝ*) ∧ ((𝑥 / 2) ∈ ℝ* ∧ (𝑥 / 2) ∈ ℝ*)) → ((((𝐹𝑘)𝐷(𝐹𝑗)) < (𝑥 / 2) ∧ ((𝐹𝑗)𝐷(𝐹𝑚)) < (𝑥 / 2)) → (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) < ((𝑥 / 2) +𝑒 (𝑥 / 2))))
2517, 20, 23, 23, 24syl22anc 867 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((((𝐹𝑘)𝐷(𝐹𝑗)) < (𝑥 / 2) ∧ ((𝐹𝑗)𝐷(𝐹𝑚)) < (𝑥 / 2)) → (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) < ((𝑥 / 2) +𝑒 (𝑥 / 2))))
26 rexadd 12265 . . . . . . . . . . . . 13 (((𝑥 / 2) ∈ ℝ ∧ (𝑥 / 2) ∈ ℝ) → ((𝑥 / 2) +𝑒 (𝑥 / 2)) = ((𝑥 / 2) + (𝑥 / 2)))
2722, 22, 26syl2anc 579 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((𝑥 / 2) +𝑒 (𝑥 / 2)) = ((𝑥 / 2) + (𝑥 / 2)))
2821recnd 10322 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → 𝑥 ∈ ℂ)
29282halvesd 11524 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((𝑥 / 2) + (𝑥 / 2)) = 𝑥)
3027, 29eqtrd 2799 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((𝑥 / 2) +𝑒 (𝑥 / 2)) = 𝑥)
3130breq2d 4821 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) < ((𝑥 / 2) +𝑒 (𝑥 / 2)) ↔ (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥))
32 xmettri 22435 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋 ∧ (𝐹𝑗) ∈ 𝑋)) → ((𝐹𝑘)𝐷(𝐹𝑚)) ≤ (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))))
3313, 14, 18, 15, 32syl13anc 1491 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((𝐹𝑘)𝐷(𝐹𝑚)) ≤ (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))))
34 xmetcl 22415 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) → ((𝐹𝑘)𝐷(𝐹𝑚)) ∈ ℝ*)
3513, 14, 18, 34syl3anc 1490 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((𝐹𝑘)𝐷(𝐹𝑚)) ∈ ℝ*)
3617, 20xaddcld 12333 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) ∈ ℝ*)
3721rexrd 10343 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → 𝑥 ∈ ℝ*)
38 xrlelttr 12189 . . . . . . . . . . . 12 ((((𝐹𝑘)𝐷(𝐹𝑚)) ∈ ℝ* ∧ (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) ∈ ℝ*𝑥 ∈ ℝ*) → ((((𝐹𝑘)𝐷(𝐹𝑚)) ≤ (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) ∧ (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
3935, 36, 37, 38syl3anc 1490 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((((𝐹𝑘)𝐷(𝐹𝑚)) ≤ (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) ∧ (((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
4033, 39mpand 686 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) < 𝑥 → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
4131, 40sylbid 231 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((((𝐹𝑘)𝐷(𝐹𝑗)) +𝑒 ((𝐹𝑗)𝐷(𝐹𝑚))) < ((𝑥 / 2) +𝑒 (𝑥 / 2)) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
4225, 41syld 47 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((((𝐹𝑘)𝐷(𝐹𝑗)) < (𝑥 / 2) ∧ ((𝐹𝑗)𝐷(𝐹𝑚)) < (𝑥 / 2)) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
43 ovex 6874 . . . . . . . . . . 11 ((𝐹𝑘)𝐷(𝐹𝑗)) ∈ V
44 fvi 6444 . . . . . . . . . . 11 (((𝐹𝑘)𝐷(𝐹𝑗)) ∈ V → ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) = ((𝐹𝑘)𝐷(𝐹𝑗)))
4543, 44ax-mp 5 . . . . . . . . . 10 ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) = ((𝐹𝑘)𝐷(𝐹𝑗))
4645breq1i 4816 . . . . . . . . 9 (( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) ↔ ((𝐹𝑘)𝐷(𝐹𝑗)) < (𝑥 / 2))
47 ovex 6874 . . . . . . . . . . 11 ((𝐹𝑗)𝐷(𝐹𝑚)) ∈ V
48 fvi 6444 . . . . . . . . . . 11 (((𝐹𝑗)𝐷(𝐹𝑚)) ∈ V → ( I ‘((𝐹𝑗)𝐷(𝐹𝑚))) = ((𝐹𝑗)𝐷(𝐹𝑚)))
4947, 48ax-mp 5 . . . . . . . . . 10 ( I ‘((𝐹𝑗)𝐷(𝐹𝑚))) = ((𝐹𝑗)𝐷(𝐹𝑚))
5049breq1i 4816 . . . . . . . . 9 (( I ‘((𝐹𝑗)𝐷(𝐹𝑚))) < (𝑥 / 2) ↔ ((𝐹𝑗)𝐷(𝐹𝑚)) < (𝑥 / 2))
5146, 50anbi12i 620 . . . . . . . 8 ((( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) ∧ ( I ‘((𝐹𝑗)𝐷(𝐹𝑚))) < (𝑥 / 2)) ↔ (((𝐹𝑘)𝐷(𝐹𝑗)) < (𝑥 / 2) ∧ ((𝐹𝑗)𝐷(𝐹𝑚)) < (𝑥 / 2)))
52 ovex 6874 . . . . . . . . . 10 ((𝐹𝑘)𝐷(𝐹𝑚)) ∈ V
53 fvi 6444 . . . . . . . . . 10 (((𝐹𝑘)𝐷(𝐹𝑚)) ∈ V → ( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) = ((𝐹𝑘)𝐷(𝐹𝑚)))
5452, 53ax-mp 5 . . . . . . . . 9 ( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) = ((𝐹𝑘)𝐷(𝐹𝑚))
5554breq1i 4816 . . . . . . . 8 (( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥 ↔ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)
5642, 51, 553imtr4g 287 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑚) ∈ 𝑋) ∧ ((𝐹𝑗) ∈ 𝑋𝑥 ∈ ℝ)) → ((( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) ∧ ( I ‘((𝐹𝑗)𝐷(𝐹𝑚))) < (𝑥 / 2)) → ( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))
575, 6, 7, 8, 10, 12, 56cau3lem 14381 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → (∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
584, 57syl 17 . . . . 5 ((𝜑𝐹 ∈ (𝑋pm ℂ)) → (∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
5945breq1i 4816 . . . . . . . . . 10 (( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥 ↔ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)
6059anbi2i 616 . . . . . . . . 9 (((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
61 df-3an 1109 . . . . . . . . 9 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
6260, 61bitr4i 269 . . . . . . . 8 (((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
6362ralbii 3127 . . . . . . 7 (∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
6463rexbii 3188 . . . . . 6 (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
6564ralbii 3127 . . . . 5 (∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ( I ‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥))
6655ralbii 3127 . . . . . . . . . 10 (∀𝑚 ∈ (ℤ𝑘)( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥 ↔ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)
6766anbi2i 616 . . . . . . . . 9 (((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
68 df-3an 1109 . . . . . . . . 9 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
6967, 68bitr4i 269 . . . . . . . 8 (((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
7069ralbii 3127 . . . . . . 7 (∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
7170rexbii 3188 . . . . . 6 (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
7271ralbii 3127 . . . . 5 (∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)( I ‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
7358, 65, 723bitr3g 304 . . . 4 ((𝜑𝐹 ∈ (𝑋pm ℂ)) → (∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
74 iscau3.4 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
7574adantr 472 . . . . . 6 ((𝜑𝐹 ∈ (𝑋pm ℂ)) → 𝑀 ∈ ℤ)
76 iscau3.2 . . . . . . 7 𝑍 = (ℤ𝑀)
7776rexuz3 14375 . . . . . 6 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
7875, 77syl 17 . . . . 5 ((𝜑𝐹 ∈ (𝑋pm ℂ)) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
7978ralbidv 3133 . . . 4 ((𝜑𝐹 ∈ (𝑋pm ℂ)) → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
8073, 79bitr4d 273 . . 3 ((𝜑𝐹 ∈ (𝑋pm ℂ)) → (∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
8180pm5.32da 574 . 2 (𝜑 → ((𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑥)) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))))
823, 81bitrd 270 1 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wral 3055  wrex 3056  Vcvv 3350   class class class wbr 4809   I cid 5184  dom cdm 5277  cfv 6068  (class class class)co 6842  pm cpm 8061  cc 10187  cr 10188   + caddc 10192  *cxr 10327   < clt 10328  cle 10329   / cdiv 10938  2c2 11327  cz 11624  cuz 11886  +crp 12028   +𝑒 cxad 12144  ∞Metcxmet 20004  Cauccau 23330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-po 5198  df-so 5199  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-1st 7366  df-2nd 7367  df-er 7947  df-map 8062  df-pm 8063  df-en 8161  df-dom 8162  df-sdom 8163  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-2 11335  df-z 11625  df-uz 11887  df-rp 12029  df-xneg 12146  df-xadd 12147  df-psmet 20011  df-xmet 20012  df-bl 20014  df-cau 23333
This theorem is referenced by:  iscau4  23356  caucfil  23360  cmetcaulem  23365  heibor1lem  33962
  Copyright terms: Public domain W3C validator