MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdcnlem Structured version   Visualization version   GIF version

Theorem metdcnlem 23008
Description: The metric function of a metric space is always continuous in the topology generated by it. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 4-Sep-2015.)
Hypotheses
Ref Expression
xmetdcn2.1 𝐽 = (MetOpen‘𝐷)
xmetdcn2.2 𝐶 = (dist‘ℝ*𝑠)
xmetdcn2.3 𝐾 = (MetOpen‘𝐶)
metdcn.d (𝜑𝐷 ∈ (∞Met‘𝑋))
metdcn.a (𝜑𝐴𝑋)
metdcn.b (𝜑𝐵𝑋)
metdcn.r (𝜑𝑅 ∈ ℝ+)
metdcn.y (𝜑𝑌𝑋)
metdcn.z (𝜑𝑍𝑋)
metdcn.4 (𝜑 → (𝐴𝐷𝑌) < (𝑅 / 2))
metdcn.5 (𝜑 → (𝐵𝐷𝑍) < (𝑅 / 2))
Assertion
Ref Expression
metdcnlem (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝑍)) < 𝑅)

Proof of Theorem metdcnlem
StepHypRef Expression
1 xmetdcn2.2 . . . . 5 𝐶 = (dist‘ℝ*𝑠)
21xrsxmet 22981 . . . 4 𝐶 ∈ (∞Met‘ℝ*)
32a1i 11 . . 3 (𝜑𝐶 ∈ (∞Met‘ℝ*))
4 metdcn.d . . . 4 (𝜑𝐷 ∈ (∞Met‘𝑋))
5 metdcn.a . . . 4 (𝜑𝐴𝑋)
6 metdcn.b . . . 4 (𝜑𝐵𝑋)
7 xmetcl 22505 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)
84, 5, 6, 7syl3anc 1496 . . 3 (𝜑 → (𝐴𝐷𝐵) ∈ ℝ*)
9 metdcn.y . . . 4 (𝜑𝑌𝑋)
10 metdcn.z . . . 4 (𝜑𝑍𝑋)
11 xmetcl 22505 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑍𝑋) → (𝑌𝐷𝑍) ∈ ℝ*)
124, 9, 10, 11syl3anc 1496 . . 3 (𝜑 → (𝑌𝐷𝑍) ∈ ℝ*)
13 xmetcl 22505 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝐵𝑋) → (𝑌𝐷𝐵) ∈ ℝ*)
144, 9, 6, 13syl3anc 1496 . . . . 5 (𝜑 → (𝑌𝐷𝐵) ∈ ℝ*)
15 metdcn.r . . . . . . 7 (𝜑𝑅 ∈ ℝ+)
1615rphalfcld 12167 . . . . . 6 (𝜑 → (𝑅 / 2) ∈ ℝ+)
1716rpred 12155 . . . . 5 (𝜑 → (𝑅 / 2) ∈ ℝ)
18 xmetcl 22505 . . . . . . 7 ((𝐶 ∈ (∞Met‘ℝ*) ∧ (𝐴𝐷𝐵) ∈ ℝ* ∧ (𝑌𝐷𝐵) ∈ ℝ*) → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) ∈ ℝ*)
193, 8, 14, 18syl3anc 1496 . . . . . 6 (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) ∈ ℝ*)
2016rpxrd 12156 . . . . . 6 (𝜑 → (𝑅 / 2) ∈ ℝ*)
21 xmetcl 22505 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝑌𝑋) → (𝐴𝐷𝑌) ∈ ℝ*)
224, 5, 9, 21syl3anc 1496 . . . . . . 7 (𝜑 → (𝐴𝐷𝑌) ∈ ℝ*)
231xmetrtri2 22530 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝑌𝑋𝐵𝑋)) → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) ≤ (𝐴𝐷𝑌))
244, 5, 9, 6, 23syl13anc 1497 . . . . . . 7 (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) ≤ (𝐴𝐷𝑌))
25 metdcn.4 . . . . . . 7 (𝜑 → (𝐴𝐷𝑌) < (𝑅 / 2))
2619, 22, 20, 24, 25xrlelttrd 12278 . . . . . 6 (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) < (𝑅 / 2))
2719, 20, 26xrltled 12268 . . . . 5 (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) ≤ (𝑅 / 2))
28 xmetlecl 22520 . . . . 5 ((𝐶 ∈ (∞Met‘ℝ*) ∧ ((𝐴𝐷𝐵) ∈ ℝ* ∧ (𝑌𝐷𝐵) ∈ ℝ*) ∧ ((𝑅 / 2) ∈ ℝ ∧ ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) ≤ (𝑅 / 2))) → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) ∈ ℝ)
293, 8, 14, 17, 27, 28syl122anc 1504 . . . 4 (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) ∈ ℝ)
30 xmetcl 22505 . . . . . . 7 ((𝐶 ∈ (∞Met‘ℝ*) ∧ (𝑌𝐷𝐵) ∈ ℝ* ∧ (𝑌𝐷𝑍) ∈ ℝ*) → ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍)) ∈ ℝ*)
313, 14, 12, 30syl3anc 1496 . . . . . 6 (𝜑 → ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍)) ∈ ℝ*)
32 xmetcl 22505 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵𝑋𝑍𝑋) → (𝐵𝐷𝑍) ∈ ℝ*)
334, 6, 10, 32syl3anc 1496 . . . . . . 7 (𝜑 → (𝐵𝐷𝑍) ∈ ℝ*)
34 xmetsym 22521 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝐵𝑋) → (𝑌𝐷𝐵) = (𝐵𝐷𝑌))
354, 9, 6, 34syl3anc 1496 . . . . . . . . 9 (𝜑 → (𝑌𝐷𝐵) = (𝐵𝐷𝑌))
36 xmetsym 22521 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑍𝑋) → (𝑌𝐷𝑍) = (𝑍𝐷𝑌))
374, 9, 10, 36syl3anc 1496 . . . . . . . . 9 (𝜑 → (𝑌𝐷𝑍) = (𝑍𝐷𝑌))
3835, 37oveq12d 6922 . . . . . . . 8 (𝜑 → ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍)) = ((𝐵𝐷𝑌)𝐶(𝑍𝐷𝑌)))
391xmetrtri2 22530 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐵𝑋𝑍𝑋𝑌𝑋)) → ((𝐵𝐷𝑌)𝐶(𝑍𝐷𝑌)) ≤ (𝐵𝐷𝑍))
404, 6, 10, 9, 39syl13anc 1497 . . . . . . . 8 (𝜑 → ((𝐵𝐷𝑌)𝐶(𝑍𝐷𝑌)) ≤ (𝐵𝐷𝑍))
4138, 40eqbrtrd 4894 . . . . . . 7 (𝜑 → ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍)) ≤ (𝐵𝐷𝑍))
42 metdcn.5 . . . . . . 7 (𝜑 → (𝐵𝐷𝑍) < (𝑅 / 2))
4331, 33, 20, 41, 42xrlelttrd 12278 . . . . . 6 (𝜑 → ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍)) < (𝑅 / 2))
4431, 20, 43xrltled 12268 . . . . 5 (𝜑 → ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍)) ≤ (𝑅 / 2))
45 xmetlecl 22520 . . . . 5 ((𝐶 ∈ (∞Met‘ℝ*) ∧ ((𝑌𝐷𝐵) ∈ ℝ* ∧ (𝑌𝐷𝑍) ∈ ℝ*) ∧ ((𝑅 / 2) ∈ ℝ ∧ ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍)) ≤ (𝑅 / 2))) → ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍)) ∈ ℝ)
463, 14, 12, 17, 44, 45syl122anc 1504 . . . 4 (𝜑 → ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍)) ∈ ℝ)
4729, 46readdcld 10385 . . 3 (𝜑 → (((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) + ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍))) ∈ ℝ)
48 xmettri 22525 . . . . 5 ((𝐶 ∈ (∞Met‘ℝ*) ∧ ((𝐴𝐷𝐵) ∈ ℝ* ∧ (𝑌𝐷𝑍) ∈ ℝ* ∧ (𝑌𝐷𝐵) ∈ ℝ*)) → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝑍)) ≤ (((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) +𝑒 ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍))))
493, 8, 12, 14, 48syl13anc 1497 . . . 4 (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝑍)) ≤ (((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) +𝑒 ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍))))
50 rexadd 12350 . . . . 5 ((((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) ∈ ℝ ∧ ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍)) ∈ ℝ) → (((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) +𝑒 ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍))) = (((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) + ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍))))
5129, 46, 50syl2anc 581 . . . 4 (𝜑 → (((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) +𝑒 ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍))) = (((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) + ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍))))
5249, 51breqtrd 4898 . . 3 (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝑍)) ≤ (((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) + ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍))))
53 xmetlecl 22520 . . 3 ((𝐶 ∈ (∞Met‘ℝ*) ∧ ((𝐴𝐷𝐵) ∈ ℝ* ∧ (𝑌𝐷𝑍) ∈ ℝ*) ∧ ((((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) + ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍))) ∈ ℝ ∧ ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝑍)) ≤ (((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) + ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍))))) → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝑍)) ∈ ℝ)
543, 8, 12, 47, 52, 53syl122anc 1504 . 2 (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝑍)) ∈ ℝ)
5515rpred 12155 . 2 (𝜑𝑅 ∈ ℝ)
5629, 46, 55, 26, 43lt2halvesd 11605 . 2 (𝜑 → (((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) + ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍))) < 𝑅)
5754, 47, 55, 52, 56lelttrd 10513 1 (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝑍)) < 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1658  wcel 2166   class class class wbr 4872  cfv 6122  (class class class)co 6904  cr 10250   + caddc 10254  *cxr 10389   < clt 10390  cle 10391   / cdiv 11008  2c2 11405  +crp 12111   +𝑒 cxad 12229  distcds 16313  *𝑠cxrs 16512  ∞Metcxmet 20090  MetOpencmopn 20095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126  ax-un 7208  ax-cnex 10307  ax-resscn 10308  ax-1cn 10309  ax-icn 10310  ax-addcl 10311  ax-addrcl 10312  ax-mulcl 10313  ax-mulrcl 10314  ax-mulcom 10315  ax-addass 10316  ax-mulass 10317  ax-distr 10318  ax-i2m1 10319  ax-1ne0 10320  ax-1rid 10321  ax-rnegex 10322  ax-rrecex 10323  ax-cnre 10324  ax-pre-lttri 10325  ax-pre-lttrn 10326  ax-pre-ltadd 10327  ax-pre-mulgt0 10328  ax-pre-sup 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-nel 3102  df-ral 3121  df-rex 3122  df-reu 3123  df-rmo 3124  df-rab 3125  df-v 3415  df-sbc 3662  df-csb 3757  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-pss 3813  df-nul 4144  df-if 4306  df-pw 4379  df-sn 4397  df-pr 4399  df-tp 4401  df-op 4403  df-uni 4658  df-int 4697  df-iun 4741  df-br 4873  df-opab 4935  df-mpt 4952  df-tr 4975  df-id 5249  df-eprel 5254  df-po 5262  df-so 5263  df-fr 5300  df-we 5302  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-pred 5919  df-ord 5965  df-on 5966  df-lim 5967  df-suc 5968  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-f1 6127  df-fo 6128  df-f1o 6129  df-fv 6130  df-riota 6865  df-ov 6907  df-oprab 6908  df-mpt2 6909  df-om 7326  df-1st 7427  df-2nd 7428  df-wrecs 7671  df-recs 7733  df-rdg 7771  df-1o 7825  df-oadd 7829  df-er 8008  df-map 8123  df-en 8222  df-dom 8223  df-sdom 8224  df-fin 8225  df-sup 8616  df-pnf 10392  df-mnf 10393  df-xr 10394  df-ltxr 10395  df-le 10396  df-sub 10586  df-neg 10587  df-div 11009  df-nn 11350  df-2 11413  df-3 11414  df-4 11415  df-5 11416  df-6 11417  df-7 11418  df-8 11419  df-9 11420  df-n0 11618  df-z 11704  df-dec 11821  df-uz 11968  df-rp 12112  df-xneg 12231  df-xadd 12232  df-xmul 12233  df-icc 12469  df-fz 12619  df-seq 13095  df-exp 13154  df-cj 14215  df-re 14216  df-im 14217  df-sqrt 14351  df-abs 14352  df-struct 16223  df-ndx 16224  df-slot 16225  df-base 16227  df-plusg 16317  df-mulr 16318  df-tset 16323  df-ple 16324  df-ds 16326  df-xrs 16514  df-xmet 20098
This theorem is referenced by:  xmetdcn2  23009
  Copyright terms: Public domain W3C validator