MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdcnlem Structured version   Visualization version   GIF version

Theorem metdcnlem 24872
Description: The metric function of a metric space is always continuous in the topology generated by it. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 4-Sep-2015.)
Hypotheses
Ref Expression
xmetdcn2.1 𝐽 = (MetOpen‘𝐷)
xmetdcn2.2 𝐶 = (dist‘ℝ*𝑠)
xmetdcn2.3 𝐾 = (MetOpen‘𝐶)
metdcn.d (𝜑𝐷 ∈ (∞Met‘𝑋))
metdcn.a (𝜑𝐴𝑋)
metdcn.b (𝜑𝐵𝑋)
metdcn.r (𝜑𝑅 ∈ ℝ+)
metdcn.y (𝜑𝑌𝑋)
metdcn.z (𝜑𝑍𝑋)
metdcn.4 (𝜑 → (𝐴𝐷𝑌) < (𝑅 / 2))
metdcn.5 (𝜑 → (𝐵𝐷𝑍) < (𝑅 / 2))
Assertion
Ref Expression
metdcnlem (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝑍)) < 𝑅)

Proof of Theorem metdcnlem
StepHypRef Expression
1 xmetdcn2.2 . . . . 5 𝐶 = (dist‘ℝ*𝑠)
21xrsxmet 24845 . . . 4 𝐶 ∈ (∞Met‘ℝ*)
32a1i 11 . . 3 (𝜑𝐶 ∈ (∞Met‘ℝ*))
4 metdcn.d . . . 4 (𝜑𝐷 ∈ (∞Met‘𝑋))
5 metdcn.a . . . 4 (𝜑𝐴𝑋)
6 metdcn.b . . . 4 (𝜑𝐵𝑋)
7 xmetcl 24357 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)
84, 5, 6, 7syl3anc 1370 . . 3 (𝜑 → (𝐴𝐷𝐵) ∈ ℝ*)
9 metdcn.y . . . 4 (𝜑𝑌𝑋)
10 metdcn.z . . . 4 (𝜑𝑍𝑋)
11 xmetcl 24357 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑍𝑋) → (𝑌𝐷𝑍) ∈ ℝ*)
124, 9, 10, 11syl3anc 1370 . . 3 (𝜑 → (𝑌𝐷𝑍) ∈ ℝ*)
13 xmetcl 24357 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝐵𝑋) → (𝑌𝐷𝐵) ∈ ℝ*)
144, 9, 6, 13syl3anc 1370 . . . . 5 (𝜑 → (𝑌𝐷𝐵) ∈ ℝ*)
15 metdcn.r . . . . . . 7 (𝜑𝑅 ∈ ℝ+)
1615rphalfcld 13087 . . . . . 6 (𝜑 → (𝑅 / 2) ∈ ℝ+)
1716rpred 13075 . . . . 5 (𝜑 → (𝑅 / 2) ∈ ℝ)
18 xmetcl 24357 . . . . . . 7 ((𝐶 ∈ (∞Met‘ℝ*) ∧ (𝐴𝐷𝐵) ∈ ℝ* ∧ (𝑌𝐷𝐵) ∈ ℝ*) → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) ∈ ℝ*)
193, 8, 14, 18syl3anc 1370 . . . . . 6 (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) ∈ ℝ*)
2016rpxrd 13076 . . . . . 6 (𝜑 → (𝑅 / 2) ∈ ℝ*)
21 xmetcl 24357 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝑌𝑋) → (𝐴𝐷𝑌) ∈ ℝ*)
224, 5, 9, 21syl3anc 1370 . . . . . . 7 (𝜑 → (𝐴𝐷𝑌) ∈ ℝ*)
231xmetrtri2 24382 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝑌𝑋𝐵𝑋)) → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) ≤ (𝐴𝐷𝑌))
244, 5, 9, 6, 23syl13anc 1371 . . . . . . 7 (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) ≤ (𝐴𝐷𝑌))
25 metdcn.4 . . . . . . 7 (𝜑 → (𝐴𝐷𝑌) < (𝑅 / 2))
2619, 22, 20, 24, 25xrlelttrd 13199 . . . . . 6 (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) < (𝑅 / 2))
2719, 20, 26xrltled 13189 . . . . 5 (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) ≤ (𝑅 / 2))
28 xmetlecl 24372 . . . . 5 ((𝐶 ∈ (∞Met‘ℝ*) ∧ ((𝐴𝐷𝐵) ∈ ℝ* ∧ (𝑌𝐷𝐵) ∈ ℝ*) ∧ ((𝑅 / 2) ∈ ℝ ∧ ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) ≤ (𝑅 / 2))) → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) ∈ ℝ)
293, 8, 14, 17, 27, 28syl122anc 1378 . . . 4 (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) ∈ ℝ)
30 xmetcl 24357 . . . . . . 7 ((𝐶 ∈ (∞Met‘ℝ*) ∧ (𝑌𝐷𝐵) ∈ ℝ* ∧ (𝑌𝐷𝑍) ∈ ℝ*) → ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍)) ∈ ℝ*)
313, 14, 12, 30syl3anc 1370 . . . . . 6 (𝜑 → ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍)) ∈ ℝ*)
32 xmetcl 24357 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵𝑋𝑍𝑋) → (𝐵𝐷𝑍) ∈ ℝ*)
334, 6, 10, 32syl3anc 1370 . . . . . . 7 (𝜑 → (𝐵𝐷𝑍) ∈ ℝ*)
34 xmetsym 24373 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝐵𝑋) → (𝑌𝐷𝐵) = (𝐵𝐷𝑌))
354, 9, 6, 34syl3anc 1370 . . . . . . . . 9 (𝜑 → (𝑌𝐷𝐵) = (𝐵𝐷𝑌))
36 xmetsym 24373 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑍𝑋) → (𝑌𝐷𝑍) = (𝑍𝐷𝑌))
374, 9, 10, 36syl3anc 1370 . . . . . . . . 9 (𝜑 → (𝑌𝐷𝑍) = (𝑍𝐷𝑌))
3835, 37oveq12d 7449 . . . . . . . 8 (𝜑 → ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍)) = ((𝐵𝐷𝑌)𝐶(𝑍𝐷𝑌)))
391xmetrtri2 24382 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐵𝑋𝑍𝑋𝑌𝑋)) → ((𝐵𝐷𝑌)𝐶(𝑍𝐷𝑌)) ≤ (𝐵𝐷𝑍))
404, 6, 10, 9, 39syl13anc 1371 . . . . . . . 8 (𝜑 → ((𝐵𝐷𝑌)𝐶(𝑍𝐷𝑌)) ≤ (𝐵𝐷𝑍))
4138, 40eqbrtrd 5170 . . . . . . 7 (𝜑 → ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍)) ≤ (𝐵𝐷𝑍))
42 metdcn.5 . . . . . . 7 (𝜑 → (𝐵𝐷𝑍) < (𝑅 / 2))
4331, 33, 20, 41, 42xrlelttrd 13199 . . . . . 6 (𝜑 → ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍)) < (𝑅 / 2))
4431, 20, 43xrltled 13189 . . . . 5 (𝜑 → ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍)) ≤ (𝑅 / 2))
45 xmetlecl 24372 . . . . 5 ((𝐶 ∈ (∞Met‘ℝ*) ∧ ((𝑌𝐷𝐵) ∈ ℝ* ∧ (𝑌𝐷𝑍) ∈ ℝ*) ∧ ((𝑅 / 2) ∈ ℝ ∧ ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍)) ≤ (𝑅 / 2))) → ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍)) ∈ ℝ)
463, 14, 12, 17, 44, 45syl122anc 1378 . . . 4 (𝜑 → ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍)) ∈ ℝ)
4729, 46readdcld 11288 . . 3 (𝜑 → (((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) + ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍))) ∈ ℝ)
48 xmettri 24377 . . . . 5 ((𝐶 ∈ (∞Met‘ℝ*) ∧ ((𝐴𝐷𝐵) ∈ ℝ* ∧ (𝑌𝐷𝑍) ∈ ℝ* ∧ (𝑌𝐷𝐵) ∈ ℝ*)) → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝑍)) ≤ (((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) +𝑒 ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍))))
493, 8, 12, 14, 48syl13anc 1371 . . . 4 (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝑍)) ≤ (((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) +𝑒 ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍))))
5029, 46rexaddd 13273 . . . 4 (𝜑 → (((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) +𝑒 ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍))) = (((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) + ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍))))
5149, 50breqtrd 5174 . . 3 (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝑍)) ≤ (((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) + ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍))))
52 xmetlecl 24372 . . 3 ((𝐶 ∈ (∞Met‘ℝ*) ∧ ((𝐴𝐷𝐵) ∈ ℝ* ∧ (𝑌𝐷𝑍) ∈ ℝ*) ∧ ((((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) + ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍))) ∈ ℝ ∧ ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝑍)) ≤ (((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) + ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍))))) → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝑍)) ∈ ℝ)
533, 8, 12, 47, 51, 52syl122anc 1378 . 2 (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝑍)) ∈ ℝ)
5415rpred 13075 . 2 (𝜑𝑅 ∈ ℝ)
5529, 46, 54, 26, 43lt2halvesd 12512 . 2 (𝜑 → (((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) + ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍))) < 𝑅)
5653, 47, 54, 51, 55lelttrd 11417 1 (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝑍)) < 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106   class class class wbr 5148  cfv 6563  (class class class)co 7431  cr 11152   + caddc 11156  *cxr 11292   < clt 11293  cle 11294   / cdiv 11918  2c2 12319  +crp 13032   +𝑒 cxad 13150  distcds 17307  *𝑠cxrs 17547  ∞Metcxmet 21367  MetOpencmopn 21372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-icc 13391  df-fz 13545  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-struct 17181  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-mulr 17312  df-tset 17317  df-ple 17318  df-ds 17320  df-xrs 17549  df-xmet 21375
This theorem is referenced by:  xmetdcn2  24873
  Copyright terms: Public domain W3C validator