MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdcnlem Structured version   Visualization version   GIF version

Theorem metdcnlem 24776
Description: The metric function of a metric space is always continuous in the topology generated by it. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 4-Sep-2015.)
Hypotheses
Ref Expression
xmetdcn2.1 𝐽 = (MetOpen‘𝐷)
xmetdcn2.2 𝐶 = (dist‘ℝ*𝑠)
xmetdcn2.3 𝐾 = (MetOpen‘𝐶)
metdcn.d (𝜑𝐷 ∈ (∞Met‘𝑋))
metdcn.a (𝜑𝐴𝑋)
metdcn.b (𝜑𝐵𝑋)
metdcn.r (𝜑𝑅 ∈ ℝ+)
metdcn.y (𝜑𝑌𝑋)
metdcn.z (𝜑𝑍𝑋)
metdcn.4 (𝜑 → (𝐴𝐷𝑌) < (𝑅 / 2))
metdcn.5 (𝜑 → (𝐵𝐷𝑍) < (𝑅 / 2))
Assertion
Ref Expression
metdcnlem (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝑍)) < 𝑅)

Proof of Theorem metdcnlem
StepHypRef Expression
1 xmetdcn2.2 . . . . 5 𝐶 = (dist‘ℝ*𝑠)
21xrsxmet 24749 . . . 4 𝐶 ∈ (∞Met‘ℝ*)
32a1i 11 . . 3 (𝜑𝐶 ∈ (∞Met‘ℝ*))
4 metdcn.d . . . 4 (𝜑𝐷 ∈ (∞Met‘𝑋))
5 metdcn.a . . . 4 (𝜑𝐴𝑋)
6 metdcn.b . . . 4 (𝜑𝐵𝑋)
7 xmetcl 24270 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)
84, 5, 6, 7syl3anc 1373 . . 3 (𝜑 → (𝐴𝐷𝐵) ∈ ℝ*)
9 metdcn.y . . . 4 (𝜑𝑌𝑋)
10 metdcn.z . . . 4 (𝜑𝑍𝑋)
11 xmetcl 24270 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑍𝑋) → (𝑌𝐷𝑍) ∈ ℝ*)
124, 9, 10, 11syl3anc 1373 . . 3 (𝜑 → (𝑌𝐷𝑍) ∈ ℝ*)
13 xmetcl 24270 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝐵𝑋) → (𝑌𝐷𝐵) ∈ ℝ*)
144, 9, 6, 13syl3anc 1373 . . . . 5 (𝜑 → (𝑌𝐷𝐵) ∈ ℝ*)
15 metdcn.r . . . . . . 7 (𝜑𝑅 ∈ ℝ+)
1615rphalfcld 13063 . . . . . 6 (𝜑 → (𝑅 / 2) ∈ ℝ+)
1716rpred 13051 . . . . 5 (𝜑 → (𝑅 / 2) ∈ ℝ)
18 xmetcl 24270 . . . . . . 7 ((𝐶 ∈ (∞Met‘ℝ*) ∧ (𝐴𝐷𝐵) ∈ ℝ* ∧ (𝑌𝐷𝐵) ∈ ℝ*) → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) ∈ ℝ*)
193, 8, 14, 18syl3anc 1373 . . . . . 6 (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) ∈ ℝ*)
2016rpxrd 13052 . . . . . 6 (𝜑 → (𝑅 / 2) ∈ ℝ*)
21 xmetcl 24270 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝑌𝑋) → (𝐴𝐷𝑌) ∈ ℝ*)
224, 5, 9, 21syl3anc 1373 . . . . . . 7 (𝜑 → (𝐴𝐷𝑌) ∈ ℝ*)
231xmetrtri2 24295 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝑌𝑋𝐵𝑋)) → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) ≤ (𝐴𝐷𝑌))
244, 5, 9, 6, 23syl13anc 1374 . . . . . . 7 (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) ≤ (𝐴𝐷𝑌))
25 metdcn.4 . . . . . . 7 (𝜑 → (𝐴𝐷𝑌) < (𝑅 / 2))
2619, 22, 20, 24, 25xrlelttrd 13176 . . . . . 6 (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) < (𝑅 / 2))
2719, 20, 26xrltled 13166 . . . . 5 (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) ≤ (𝑅 / 2))
28 xmetlecl 24285 . . . . 5 ((𝐶 ∈ (∞Met‘ℝ*) ∧ ((𝐴𝐷𝐵) ∈ ℝ* ∧ (𝑌𝐷𝐵) ∈ ℝ*) ∧ ((𝑅 / 2) ∈ ℝ ∧ ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) ≤ (𝑅 / 2))) → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) ∈ ℝ)
293, 8, 14, 17, 27, 28syl122anc 1381 . . . 4 (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) ∈ ℝ)
30 xmetcl 24270 . . . . . . 7 ((𝐶 ∈ (∞Met‘ℝ*) ∧ (𝑌𝐷𝐵) ∈ ℝ* ∧ (𝑌𝐷𝑍) ∈ ℝ*) → ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍)) ∈ ℝ*)
313, 14, 12, 30syl3anc 1373 . . . . . 6 (𝜑 → ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍)) ∈ ℝ*)
32 xmetcl 24270 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵𝑋𝑍𝑋) → (𝐵𝐷𝑍) ∈ ℝ*)
334, 6, 10, 32syl3anc 1373 . . . . . . 7 (𝜑 → (𝐵𝐷𝑍) ∈ ℝ*)
34 xmetsym 24286 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝐵𝑋) → (𝑌𝐷𝐵) = (𝐵𝐷𝑌))
354, 9, 6, 34syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝑌𝐷𝐵) = (𝐵𝐷𝑌))
36 xmetsym 24286 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑍𝑋) → (𝑌𝐷𝑍) = (𝑍𝐷𝑌))
374, 9, 10, 36syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝑌𝐷𝑍) = (𝑍𝐷𝑌))
3835, 37oveq12d 7423 . . . . . . . 8 (𝜑 → ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍)) = ((𝐵𝐷𝑌)𝐶(𝑍𝐷𝑌)))
391xmetrtri2 24295 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐵𝑋𝑍𝑋𝑌𝑋)) → ((𝐵𝐷𝑌)𝐶(𝑍𝐷𝑌)) ≤ (𝐵𝐷𝑍))
404, 6, 10, 9, 39syl13anc 1374 . . . . . . . 8 (𝜑 → ((𝐵𝐷𝑌)𝐶(𝑍𝐷𝑌)) ≤ (𝐵𝐷𝑍))
4138, 40eqbrtrd 5141 . . . . . . 7 (𝜑 → ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍)) ≤ (𝐵𝐷𝑍))
42 metdcn.5 . . . . . . 7 (𝜑 → (𝐵𝐷𝑍) < (𝑅 / 2))
4331, 33, 20, 41, 42xrlelttrd 13176 . . . . . 6 (𝜑 → ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍)) < (𝑅 / 2))
4431, 20, 43xrltled 13166 . . . . 5 (𝜑 → ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍)) ≤ (𝑅 / 2))
45 xmetlecl 24285 . . . . 5 ((𝐶 ∈ (∞Met‘ℝ*) ∧ ((𝑌𝐷𝐵) ∈ ℝ* ∧ (𝑌𝐷𝑍) ∈ ℝ*) ∧ ((𝑅 / 2) ∈ ℝ ∧ ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍)) ≤ (𝑅 / 2))) → ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍)) ∈ ℝ)
463, 14, 12, 17, 44, 45syl122anc 1381 . . . 4 (𝜑 → ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍)) ∈ ℝ)
4729, 46readdcld 11264 . . 3 (𝜑 → (((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) + ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍))) ∈ ℝ)
48 xmettri 24290 . . . . 5 ((𝐶 ∈ (∞Met‘ℝ*) ∧ ((𝐴𝐷𝐵) ∈ ℝ* ∧ (𝑌𝐷𝑍) ∈ ℝ* ∧ (𝑌𝐷𝐵) ∈ ℝ*)) → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝑍)) ≤ (((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) +𝑒 ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍))))
493, 8, 12, 14, 48syl13anc 1374 . . . 4 (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝑍)) ≤ (((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) +𝑒 ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍))))
5029, 46rexaddd 13250 . . . 4 (𝜑 → (((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) +𝑒 ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍))) = (((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) + ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍))))
5149, 50breqtrd 5145 . . 3 (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝑍)) ≤ (((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) + ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍))))
52 xmetlecl 24285 . . 3 ((𝐶 ∈ (∞Met‘ℝ*) ∧ ((𝐴𝐷𝐵) ∈ ℝ* ∧ (𝑌𝐷𝑍) ∈ ℝ*) ∧ ((((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) + ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍))) ∈ ℝ ∧ ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝑍)) ≤ (((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) + ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍))))) → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝑍)) ∈ ℝ)
533, 8, 12, 47, 51, 52syl122anc 1381 . 2 (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝑍)) ∈ ℝ)
5415rpred 13051 . 2 (𝜑𝑅 ∈ ℝ)
5529, 46, 54, 26, 43lt2halvesd 12489 . 2 (𝜑 → (((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) + ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍))) < 𝑅)
5653, 47, 54, 51, 55lelttrd 11393 1 (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝑍)) < 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108   class class class wbr 5119  cfv 6531  (class class class)co 7405  cr 11128   + caddc 11132  *cxr 11268   < clt 11269  cle 11270   / cdiv 11894  2c2 12295  +crp 13008   +𝑒 cxad 13126  distcds 17280  *𝑠cxrs 17514  ∞Metcxmet 21300  MetOpencmopn 21305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-icc 13369  df-fz 13525  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-struct 17166  df-slot 17201  df-ndx 17213  df-base 17229  df-plusg 17284  df-mulr 17285  df-tset 17290  df-ple 17291  df-ds 17293  df-xrs 17516  df-xmet 21308
This theorem is referenced by:  xmetdcn2  24777
  Copyright terms: Public domain W3C validator