MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdcnlem Structured version   Visualization version   GIF version

Theorem metdcnlem 24772
Description: The metric function of a metric space is always continuous in the topology generated by it. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 4-Sep-2015.)
Hypotheses
Ref Expression
xmetdcn2.1 𝐽 = (MetOpen‘𝐷)
xmetdcn2.2 𝐶 = (dist‘ℝ*𝑠)
xmetdcn2.3 𝐾 = (MetOpen‘𝐶)
metdcn.d (𝜑𝐷 ∈ (∞Met‘𝑋))
metdcn.a (𝜑𝐴𝑋)
metdcn.b (𝜑𝐵𝑋)
metdcn.r (𝜑𝑅 ∈ ℝ+)
metdcn.y (𝜑𝑌𝑋)
metdcn.z (𝜑𝑍𝑋)
metdcn.4 (𝜑 → (𝐴𝐷𝑌) < (𝑅 / 2))
metdcn.5 (𝜑 → (𝐵𝐷𝑍) < (𝑅 / 2))
Assertion
Ref Expression
metdcnlem (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝑍)) < 𝑅)

Proof of Theorem metdcnlem
StepHypRef Expression
1 xmetdcn2.2 . . . . 5 𝐶 = (dist‘ℝ*𝑠)
21xrsxmet 24745 . . . 4 𝐶 ∈ (∞Met‘ℝ*)
32a1i 11 . . 3 (𝜑𝐶 ∈ (∞Met‘ℝ*))
4 metdcn.d . . . 4 (𝜑𝐷 ∈ (∞Met‘𝑋))
5 metdcn.a . . . 4 (𝜑𝐴𝑋)
6 metdcn.b . . . 4 (𝜑𝐵𝑋)
7 xmetcl 24266 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)
84, 5, 6, 7syl3anc 1373 . . 3 (𝜑 → (𝐴𝐷𝐵) ∈ ℝ*)
9 metdcn.y . . . 4 (𝜑𝑌𝑋)
10 metdcn.z . . . 4 (𝜑𝑍𝑋)
11 xmetcl 24266 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑍𝑋) → (𝑌𝐷𝑍) ∈ ℝ*)
124, 9, 10, 11syl3anc 1373 . . 3 (𝜑 → (𝑌𝐷𝑍) ∈ ℝ*)
13 xmetcl 24266 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝐵𝑋) → (𝑌𝐷𝐵) ∈ ℝ*)
144, 9, 6, 13syl3anc 1373 . . . . 5 (𝜑 → (𝑌𝐷𝐵) ∈ ℝ*)
15 metdcn.r . . . . . . 7 (𝜑𝑅 ∈ ℝ+)
1615rphalfcld 12952 . . . . . 6 (𝜑 → (𝑅 / 2) ∈ ℝ+)
1716rpred 12940 . . . . 5 (𝜑 → (𝑅 / 2) ∈ ℝ)
18 xmetcl 24266 . . . . . . 7 ((𝐶 ∈ (∞Met‘ℝ*) ∧ (𝐴𝐷𝐵) ∈ ℝ* ∧ (𝑌𝐷𝐵) ∈ ℝ*) → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) ∈ ℝ*)
193, 8, 14, 18syl3anc 1373 . . . . . 6 (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) ∈ ℝ*)
2016rpxrd 12941 . . . . . 6 (𝜑 → (𝑅 / 2) ∈ ℝ*)
21 xmetcl 24266 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝑌𝑋) → (𝐴𝐷𝑌) ∈ ℝ*)
224, 5, 9, 21syl3anc 1373 . . . . . . 7 (𝜑 → (𝐴𝐷𝑌) ∈ ℝ*)
231xmetrtri2 24291 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝑌𝑋𝐵𝑋)) → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) ≤ (𝐴𝐷𝑌))
244, 5, 9, 6, 23syl13anc 1374 . . . . . . 7 (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) ≤ (𝐴𝐷𝑌))
25 metdcn.4 . . . . . . 7 (𝜑 → (𝐴𝐷𝑌) < (𝑅 / 2))
2619, 22, 20, 24, 25xrlelttrd 13065 . . . . . 6 (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) < (𝑅 / 2))
2719, 20, 26xrltled 13055 . . . . 5 (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) ≤ (𝑅 / 2))
28 xmetlecl 24281 . . . . 5 ((𝐶 ∈ (∞Met‘ℝ*) ∧ ((𝐴𝐷𝐵) ∈ ℝ* ∧ (𝑌𝐷𝐵) ∈ ℝ*) ∧ ((𝑅 / 2) ∈ ℝ ∧ ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) ≤ (𝑅 / 2))) → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) ∈ ℝ)
293, 8, 14, 17, 27, 28syl122anc 1381 . . . 4 (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) ∈ ℝ)
30 xmetcl 24266 . . . . . . 7 ((𝐶 ∈ (∞Met‘ℝ*) ∧ (𝑌𝐷𝐵) ∈ ℝ* ∧ (𝑌𝐷𝑍) ∈ ℝ*) → ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍)) ∈ ℝ*)
313, 14, 12, 30syl3anc 1373 . . . . . 6 (𝜑 → ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍)) ∈ ℝ*)
32 xmetcl 24266 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵𝑋𝑍𝑋) → (𝐵𝐷𝑍) ∈ ℝ*)
334, 6, 10, 32syl3anc 1373 . . . . . . 7 (𝜑 → (𝐵𝐷𝑍) ∈ ℝ*)
34 xmetsym 24282 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝐵𝑋) → (𝑌𝐷𝐵) = (𝐵𝐷𝑌))
354, 9, 6, 34syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝑌𝐷𝐵) = (𝐵𝐷𝑌))
36 xmetsym 24282 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑍𝑋) → (𝑌𝐷𝑍) = (𝑍𝐷𝑌))
374, 9, 10, 36syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝑌𝐷𝑍) = (𝑍𝐷𝑌))
3835, 37oveq12d 7373 . . . . . . . 8 (𝜑 → ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍)) = ((𝐵𝐷𝑌)𝐶(𝑍𝐷𝑌)))
391xmetrtri2 24291 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐵𝑋𝑍𝑋𝑌𝑋)) → ((𝐵𝐷𝑌)𝐶(𝑍𝐷𝑌)) ≤ (𝐵𝐷𝑍))
404, 6, 10, 9, 39syl13anc 1374 . . . . . . . 8 (𝜑 → ((𝐵𝐷𝑌)𝐶(𝑍𝐷𝑌)) ≤ (𝐵𝐷𝑍))
4138, 40eqbrtrd 5117 . . . . . . 7 (𝜑 → ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍)) ≤ (𝐵𝐷𝑍))
42 metdcn.5 . . . . . . 7 (𝜑 → (𝐵𝐷𝑍) < (𝑅 / 2))
4331, 33, 20, 41, 42xrlelttrd 13065 . . . . . 6 (𝜑 → ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍)) < (𝑅 / 2))
4431, 20, 43xrltled 13055 . . . . 5 (𝜑 → ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍)) ≤ (𝑅 / 2))
45 xmetlecl 24281 . . . . 5 ((𝐶 ∈ (∞Met‘ℝ*) ∧ ((𝑌𝐷𝐵) ∈ ℝ* ∧ (𝑌𝐷𝑍) ∈ ℝ*) ∧ ((𝑅 / 2) ∈ ℝ ∧ ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍)) ≤ (𝑅 / 2))) → ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍)) ∈ ℝ)
463, 14, 12, 17, 44, 45syl122anc 1381 . . . 4 (𝜑 → ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍)) ∈ ℝ)
4729, 46readdcld 11152 . . 3 (𝜑 → (((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) + ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍))) ∈ ℝ)
48 xmettri 24286 . . . . 5 ((𝐶 ∈ (∞Met‘ℝ*) ∧ ((𝐴𝐷𝐵) ∈ ℝ* ∧ (𝑌𝐷𝑍) ∈ ℝ* ∧ (𝑌𝐷𝐵) ∈ ℝ*)) → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝑍)) ≤ (((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) +𝑒 ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍))))
493, 8, 12, 14, 48syl13anc 1374 . . . 4 (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝑍)) ≤ (((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) +𝑒 ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍))))
5029, 46rexaddd 13140 . . . 4 (𝜑 → (((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) +𝑒 ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍))) = (((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) + ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍))))
5149, 50breqtrd 5121 . . 3 (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝑍)) ≤ (((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) + ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍))))
52 xmetlecl 24281 . . 3 ((𝐶 ∈ (∞Met‘ℝ*) ∧ ((𝐴𝐷𝐵) ∈ ℝ* ∧ (𝑌𝐷𝑍) ∈ ℝ*) ∧ ((((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) + ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍))) ∈ ℝ ∧ ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝑍)) ≤ (((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) + ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍))))) → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝑍)) ∈ ℝ)
533, 8, 12, 47, 51, 52syl122anc 1381 . 2 (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝑍)) ∈ ℝ)
5415rpred 12940 . 2 (𝜑𝑅 ∈ ℝ)
5529, 46, 54, 26, 43lt2halvesd 12380 . 2 (𝜑 → (((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) + ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍))) < 𝑅)
5653, 47, 54, 51, 55lelttrd 11282 1 (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝑍)) < 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113   class class class wbr 5095  cfv 6489  (class class class)co 7355  cr 11016   + caddc 11020  *cxr 11156   < clt 11157  cle 11158   / cdiv 11785  2c2 12191  +crp 12896   +𝑒 cxad 13015  distcds 17177  *𝑠cxrs 17412  ∞Metcxmet 21285  MetOpencmopn 21290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-rp 12897  df-xneg 13017  df-xadd 13018  df-xmul 13019  df-icc 13259  df-fz 13415  df-seq 13916  df-exp 13976  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-struct 17065  df-slot 17100  df-ndx 17112  df-base 17128  df-plusg 17181  df-mulr 17182  df-tset 17187  df-ple 17188  df-ds 17190  df-xrs 17414  df-xmet 21293
This theorem is referenced by:  xmetdcn2  24773
  Copyright terms: Public domain W3C validator