MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdcnlem Structured version   Visualization version   GIF version

Theorem metdcnlem 24747
Description: The metric function of a metric space is always continuous in the topology generated by it. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 4-Sep-2015.)
Hypotheses
Ref Expression
xmetdcn2.1 𝐽 = (MetOpen‘𝐷)
xmetdcn2.2 𝐶 = (dist‘ℝ*𝑠)
xmetdcn2.3 𝐾 = (MetOpen‘𝐶)
metdcn.d (𝜑𝐷 ∈ (∞Met‘𝑋))
metdcn.a (𝜑𝐴𝑋)
metdcn.b (𝜑𝐵𝑋)
metdcn.r (𝜑𝑅 ∈ ℝ+)
metdcn.y (𝜑𝑌𝑋)
metdcn.z (𝜑𝑍𝑋)
metdcn.4 (𝜑 → (𝐴𝐷𝑌) < (𝑅 / 2))
metdcn.5 (𝜑 → (𝐵𝐷𝑍) < (𝑅 / 2))
Assertion
Ref Expression
metdcnlem (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝑍)) < 𝑅)

Proof of Theorem metdcnlem
StepHypRef Expression
1 xmetdcn2.2 . . . . 5 𝐶 = (dist‘ℝ*𝑠)
21xrsxmet 24720 . . . 4 𝐶 ∈ (∞Met‘ℝ*)
32a1i 11 . . 3 (𝜑𝐶 ∈ (∞Met‘ℝ*))
4 metdcn.d . . . 4 (𝜑𝐷 ∈ (∞Met‘𝑋))
5 metdcn.a . . . 4 (𝜑𝐴𝑋)
6 metdcn.b . . . 4 (𝜑𝐵𝑋)
7 xmetcl 24241 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)
84, 5, 6, 7syl3anc 1373 . . 3 (𝜑 → (𝐴𝐷𝐵) ∈ ℝ*)
9 metdcn.y . . . 4 (𝜑𝑌𝑋)
10 metdcn.z . . . 4 (𝜑𝑍𝑋)
11 xmetcl 24241 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑍𝑋) → (𝑌𝐷𝑍) ∈ ℝ*)
124, 9, 10, 11syl3anc 1373 . . 3 (𝜑 → (𝑌𝐷𝑍) ∈ ℝ*)
13 xmetcl 24241 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝐵𝑋) → (𝑌𝐷𝐵) ∈ ℝ*)
144, 9, 6, 13syl3anc 1373 . . . . 5 (𝜑 → (𝑌𝐷𝐵) ∈ ℝ*)
15 metdcn.r . . . . . . 7 (𝜑𝑅 ∈ ℝ+)
1615rphalfcld 12941 . . . . . 6 (𝜑 → (𝑅 / 2) ∈ ℝ+)
1716rpred 12929 . . . . 5 (𝜑 → (𝑅 / 2) ∈ ℝ)
18 xmetcl 24241 . . . . . . 7 ((𝐶 ∈ (∞Met‘ℝ*) ∧ (𝐴𝐷𝐵) ∈ ℝ* ∧ (𝑌𝐷𝐵) ∈ ℝ*) → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) ∈ ℝ*)
193, 8, 14, 18syl3anc 1373 . . . . . 6 (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) ∈ ℝ*)
2016rpxrd 12930 . . . . . 6 (𝜑 → (𝑅 / 2) ∈ ℝ*)
21 xmetcl 24241 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝑌𝑋) → (𝐴𝐷𝑌) ∈ ℝ*)
224, 5, 9, 21syl3anc 1373 . . . . . . 7 (𝜑 → (𝐴𝐷𝑌) ∈ ℝ*)
231xmetrtri2 24266 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝑌𝑋𝐵𝑋)) → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) ≤ (𝐴𝐷𝑌))
244, 5, 9, 6, 23syl13anc 1374 . . . . . . 7 (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) ≤ (𝐴𝐷𝑌))
25 metdcn.4 . . . . . . 7 (𝜑 → (𝐴𝐷𝑌) < (𝑅 / 2))
2619, 22, 20, 24, 25xrlelttrd 13054 . . . . . 6 (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) < (𝑅 / 2))
2719, 20, 26xrltled 13044 . . . . 5 (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) ≤ (𝑅 / 2))
28 xmetlecl 24256 . . . . 5 ((𝐶 ∈ (∞Met‘ℝ*) ∧ ((𝐴𝐷𝐵) ∈ ℝ* ∧ (𝑌𝐷𝐵) ∈ ℝ*) ∧ ((𝑅 / 2) ∈ ℝ ∧ ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) ≤ (𝑅 / 2))) → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) ∈ ℝ)
293, 8, 14, 17, 27, 28syl122anc 1381 . . . 4 (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) ∈ ℝ)
30 xmetcl 24241 . . . . . . 7 ((𝐶 ∈ (∞Met‘ℝ*) ∧ (𝑌𝐷𝐵) ∈ ℝ* ∧ (𝑌𝐷𝑍) ∈ ℝ*) → ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍)) ∈ ℝ*)
313, 14, 12, 30syl3anc 1373 . . . . . 6 (𝜑 → ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍)) ∈ ℝ*)
32 xmetcl 24241 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵𝑋𝑍𝑋) → (𝐵𝐷𝑍) ∈ ℝ*)
334, 6, 10, 32syl3anc 1373 . . . . . . 7 (𝜑 → (𝐵𝐷𝑍) ∈ ℝ*)
34 xmetsym 24257 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝐵𝑋) → (𝑌𝐷𝐵) = (𝐵𝐷𝑌))
354, 9, 6, 34syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝑌𝐷𝐵) = (𝐵𝐷𝑌))
36 xmetsym 24257 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑍𝑋) → (𝑌𝐷𝑍) = (𝑍𝐷𝑌))
374, 9, 10, 36syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝑌𝐷𝑍) = (𝑍𝐷𝑌))
3835, 37oveq12d 7359 . . . . . . . 8 (𝜑 → ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍)) = ((𝐵𝐷𝑌)𝐶(𝑍𝐷𝑌)))
391xmetrtri2 24266 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐵𝑋𝑍𝑋𝑌𝑋)) → ((𝐵𝐷𝑌)𝐶(𝑍𝐷𝑌)) ≤ (𝐵𝐷𝑍))
404, 6, 10, 9, 39syl13anc 1374 . . . . . . . 8 (𝜑 → ((𝐵𝐷𝑌)𝐶(𝑍𝐷𝑌)) ≤ (𝐵𝐷𝑍))
4138, 40eqbrtrd 5108 . . . . . . 7 (𝜑 → ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍)) ≤ (𝐵𝐷𝑍))
42 metdcn.5 . . . . . . 7 (𝜑 → (𝐵𝐷𝑍) < (𝑅 / 2))
4331, 33, 20, 41, 42xrlelttrd 13054 . . . . . 6 (𝜑 → ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍)) < (𝑅 / 2))
4431, 20, 43xrltled 13044 . . . . 5 (𝜑 → ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍)) ≤ (𝑅 / 2))
45 xmetlecl 24256 . . . . 5 ((𝐶 ∈ (∞Met‘ℝ*) ∧ ((𝑌𝐷𝐵) ∈ ℝ* ∧ (𝑌𝐷𝑍) ∈ ℝ*) ∧ ((𝑅 / 2) ∈ ℝ ∧ ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍)) ≤ (𝑅 / 2))) → ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍)) ∈ ℝ)
463, 14, 12, 17, 44, 45syl122anc 1381 . . . 4 (𝜑 → ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍)) ∈ ℝ)
4729, 46readdcld 11136 . . 3 (𝜑 → (((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) + ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍))) ∈ ℝ)
48 xmettri 24261 . . . . 5 ((𝐶 ∈ (∞Met‘ℝ*) ∧ ((𝐴𝐷𝐵) ∈ ℝ* ∧ (𝑌𝐷𝑍) ∈ ℝ* ∧ (𝑌𝐷𝐵) ∈ ℝ*)) → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝑍)) ≤ (((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) +𝑒 ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍))))
493, 8, 12, 14, 48syl13anc 1374 . . . 4 (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝑍)) ≤ (((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) +𝑒 ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍))))
5029, 46rexaddd 13128 . . . 4 (𝜑 → (((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) +𝑒 ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍))) = (((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) + ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍))))
5149, 50breqtrd 5112 . . 3 (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝑍)) ≤ (((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) + ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍))))
52 xmetlecl 24256 . . 3 ((𝐶 ∈ (∞Met‘ℝ*) ∧ ((𝐴𝐷𝐵) ∈ ℝ* ∧ (𝑌𝐷𝑍) ∈ ℝ*) ∧ ((((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) + ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍))) ∈ ℝ ∧ ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝑍)) ≤ (((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) + ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍))))) → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝑍)) ∈ ℝ)
533, 8, 12, 47, 51, 52syl122anc 1381 . 2 (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝑍)) ∈ ℝ)
5415rpred 12929 . 2 (𝜑𝑅 ∈ ℝ)
5529, 46, 54, 26, 43lt2halvesd 12364 . 2 (𝜑 → (((𝐴𝐷𝐵)𝐶(𝑌𝐷𝐵)) + ((𝑌𝐷𝐵)𝐶(𝑌𝐷𝑍))) < 𝑅)
5653, 47, 54, 51, 55lelttrd 11266 1 (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝑍)) < 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111   class class class wbr 5086  cfv 6476  (class class class)co 7341  cr 11000   + caddc 11004  *cxr 11140   < clt 11141  cle 11142   / cdiv 11769  2c2 12175  +crp 12885   +𝑒 cxad 13004  distcds 17165  *𝑠cxrs 17399  ∞Metcxmet 21271  MetOpencmopn 21276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-icc 13247  df-fz 13403  df-seq 13904  df-exp 13964  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-struct 17053  df-slot 17088  df-ndx 17100  df-base 17116  df-plusg 17169  df-mulr 17170  df-tset 17175  df-ple 17176  df-ds 17178  df-xrs 17401  df-xmet 21279
This theorem is referenced by:  xmetdcn2  24748
  Copyright terms: Public domain W3C validator