ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthdichlem Unicode version

Theorem ivthdichlem 15290
Description: Lemma for ivthdich 15292. The result, with a few notational conveniences. (Contributed by Jim Kingdon, 22-Jul-2025.)
Hypotheses
Ref Expression
hover.f  |-  F  =  ( x  e.  RR  |->  sup ( {inf ( { x ,  0 } ,  RR ,  <  ) ,  ( x  - 
1 ) } ,  RR ,  <  ) )
ivthdichlem.z  |-  ( ph  ->  Z  e.  RR )
ivthdichlem.i  |-  ( ph  ->  A. f ( f  e.  ( RR -cn-> RR )  ->  A. a  e.  RR  A. b  e.  RR  ( ( a  <  b  /\  (
f `  a )  <  0  /\  0  < 
( f `  b
) )  ->  E. x  e.  RR  ( a  < 
x  /\  x  <  b  /\  ( f `  x )  =  0 ) ) ) )
Assertion
Ref Expression
ivthdichlem  |-  ( ph  ->  ( Z  <_  0  \/  0  <_  Z ) )
Distinct variable groups:    F, a, b, f, x    Z, a, b, f, x    ph, x
Allowed substitution hints:    ph( f, a, b)

Proof of Theorem ivthdichlem
Dummy variable  c is distinct from all other variables.
StepHypRef Expression
1 ivthdichlem.z . . . 4  |-  ( ph  ->  Z  e.  RR )
2 peano2rem 8381 . . . 4  |-  ( Z  e.  RR  ->  ( Z  -  1 )  e.  RR )
31, 2syl 14 . . 3  |-  ( ph  ->  ( Z  -  1 )  e.  RR )
4 2re 9148 . . . . 5  |-  2  e.  RR
54a1i 9 . . . 4  |-  ( ph  ->  2  e.  RR )
61, 5readdcld 8144 . . 3  |-  ( ph  ->  ( Z  +  2 )  e.  RR )
71ltm1d 9047 . . . 4  |-  ( ph  ->  ( Z  -  1 )  <  Z )
8 2rp 9822 . . . . . 6  |-  2  e.  RR+
98a1i 9 . . . . 5  |-  ( ph  ->  2  e.  RR+ )
101, 9ltaddrpd 9894 . . . 4  |-  ( ph  ->  Z  <  ( Z  +  2 ) )
113, 1, 6, 7, 10lttrd 8240 . . 3  |-  ( ph  ->  ( Z  -  1 )  <  ( Z  +  2 ) )
12 hover.f . . . . 5  |-  F  =  ( x  e.  RR  |->  sup ( {inf ( { x ,  0 } ,  RR ,  <  ) ,  ( x  - 
1 ) } ,  RR ,  <  ) )
1312hovercncf 15285 . . . 4  |-  F  e.  ( RR -cn-> RR )
1413a1i 9 . . 3  |-  ( ph  ->  F  e.  ( RR
-cn-> RR ) )
1512hovera 15286 . . . . 5  |-  ( Z  e.  RR  ->  ( F `  ( Z  -  1 ) )  <  Z )
161, 15syl 14 . . . 4  |-  ( ph  ->  ( F `  ( Z  -  1 ) )  <  Z )
1712hoverb 15287 . . . . 5  |-  ( Z  e.  RR  ->  Z  <  ( F `  ( Z  +  2 ) ) )
181, 17syl 14 . . . 4  |-  ( ph  ->  Z  <  ( F `
 ( Z  + 
2 ) ) )
1916, 18jca 306 . . 3  |-  ( ph  ->  ( ( F `  ( Z  -  1
) )  <  Z  /\  Z  <  ( F `
 ( Z  + 
2 ) ) ) )
20 ivthdichlem.i . . 3  |-  ( ph  ->  A. f ( f  e.  ( RR -cn-> RR )  ->  A. a  e.  RR  A. b  e.  RR  ( ( a  <  b  /\  (
f `  a )  <  0  /\  0  < 
( f `  b
) )  ->  E. x  e.  RR  ( a  < 
x  /\  x  <  b  /\  ( f `  x )  =  0 ) ) ) )
213, 6, 1, 11, 14, 19, 20ivthreinc 15284 . 2  |-  ( ph  ->  E. c  e.  ( ( Z  -  1 ) (,) ( Z  +  2 ) ) ( F `  c
)  =  Z )
22 0red 8115 . . . . 5  |-  ( (
ph  /\  ( c  e.  ( ( Z  - 
1 ) (,) ( Z  +  2 ) )  /\  ( F `
 c )  =  Z ) )  -> 
0  e.  RR )
23 1red 8129 . . . . 5  |-  ( (
ph  /\  ( c  e.  ( ( Z  - 
1 ) (,) ( Z  +  2 ) )  /\  ( F `
 c )  =  Z ) )  -> 
1  e.  RR )
24 elioore 10076 . . . . . 6  |-  ( c  e.  ( ( Z  -  1 ) (,) ( Z  +  2 ) )  ->  c  e.  RR )
2524ad2antrl 490 . . . . 5  |-  ( (
ph  /\  ( c  e.  ( ( Z  - 
1 ) (,) ( Z  +  2 ) )  /\  ( F `
 c )  =  Z ) )  -> 
c  e.  RR )
26 0lt1 8241 . . . . . 6  |-  0  <  1
27 axltwlin 8182 . . . . . 6  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  c  e.  RR )  ->  (
0  <  1  ->  ( 0  <  c  \/  c  <  1 ) ) )
2826, 27mpi 15 . . . . 5  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  c  e.  RR )  ->  (
0  <  c  \/  c  <  1 ) )
2922, 23, 25, 28syl3anc 1252 . . . 4  |-  ( (
ph  /\  ( c  e.  ( ( Z  - 
1 ) (,) ( Z  +  2 ) )  /\  ( F `
 c )  =  Z ) )  -> 
( 0  <  c  \/  c  <  1
) )
3029orcomd 733 . . 3  |-  ( (
ph  /\  ( c  e.  ( ( Z  - 
1 ) (,) ( Z  +  2 ) )  /\  ( F `
 c )  =  Z ) )  -> 
( c  <  1  \/  0  <  c ) )
31 simplrr 536 . . . . . 6  |-  ( ( ( ph  /\  (
c  e.  ( ( Z  -  1 ) (,) ( Z  + 
2 ) )  /\  ( F `  c )  =  Z ) )  /\  c  <  1
)  ->  ( F `  c )  =  Z )
3212hoverlt1 15288 . . . . . . 7  |-  ( ( c  e.  RR  /\  c  <  1 )  -> 
( F `  c
)  <_  0 )
3325, 32sylan 283 . . . . . 6  |-  ( ( ( ph  /\  (
c  e.  ( ( Z  -  1 ) (,) ( Z  + 
2 ) )  /\  ( F `  c )  =  Z ) )  /\  c  <  1
)  ->  ( F `  c )  <_  0
)
3431, 33eqbrtrrd 4086 . . . . 5  |-  ( ( ( ph  /\  (
c  e.  ( ( Z  -  1 ) (,) ( Z  + 
2 ) )  /\  ( F `  c )  =  Z ) )  /\  c  <  1
)  ->  Z  <_  0 )
3534ex 115 . . . 4  |-  ( (
ph  /\  ( c  e.  ( ( Z  - 
1 ) (,) ( Z  +  2 ) )  /\  ( F `
 c )  =  Z ) )  -> 
( c  <  1  ->  Z  <_  0 ) )
3612hovergt0 15289 . . . . . . 7  |-  ( ( c  e.  RR  /\  0  <  c )  -> 
0  <_  ( F `  c ) )
3725, 36sylan 283 . . . . . 6  |-  ( ( ( ph  /\  (
c  e.  ( ( Z  -  1 ) (,) ( Z  + 
2 ) )  /\  ( F `  c )  =  Z ) )  /\  0  <  c
)  ->  0  <_  ( F `  c ) )
38 simplrr 536 . . . . . 6  |-  ( ( ( ph  /\  (
c  e.  ( ( Z  -  1 ) (,) ( Z  + 
2 ) )  /\  ( F `  c )  =  Z ) )  /\  0  <  c
)  ->  ( F `  c )  =  Z )
3937, 38breqtrd 4088 . . . . 5  |-  ( ( ( ph  /\  (
c  e.  ( ( Z  -  1 ) (,) ( Z  + 
2 ) )  /\  ( F `  c )  =  Z ) )  /\  0  <  c
)  ->  0  <_  Z )
4039ex 115 . . . 4  |-  ( (
ph  /\  ( c  e.  ( ( Z  - 
1 ) (,) ( Z  +  2 ) )  /\  ( F `
 c )  =  Z ) )  -> 
( 0  <  c  ->  0  <_  Z )
)
4135, 40orim12d 790 . . 3  |-  ( (
ph  /\  ( c  e.  ( ( Z  - 
1 ) (,) ( Z  +  2 ) )  /\  ( F `
 c )  =  Z ) )  -> 
( ( c  <  1  \/  0  < 
c )  ->  ( Z  <_  0  \/  0  <_  Z ) ) )
4230, 41mpd 13 . 2  |-  ( (
ph  /\  ( c  e.  ( ( Z  - 
1 ) (,) ( Z  +  2 ) )  /\  ( F `
 c )  =  Z ) )  -> 
( Z  <_  0  \/  0  <_  Z ) )
4321, 42rexlimddv 2633 1  |-  ( ph  ->  ( Z  <_  0  \/  0  <_  Z ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 712    /\ w3a 983   A.wal 1373    = wceq 1375    e. wcel 2180   A.wral 2488   E.wrex 2489   {cpr 3647   class class class wbr 4062    |-> cmpt 4124   ` cfv 5294  (class class class)co 5974   supcsup 7117  infcinf 7118   RRcr 7966   0cc0 7967   1c1 7968    + caddc 7970    < clt 8149    <_ cle 8150    - cmin 8285   2c2 9129   RR+crp 9817   (,)cioo 10052   -cn->ccncf 15209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087  ax-addf 8089
This theorem depends on definitions:  df-bi 117  df-stab 835  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-map 6767  df-sup 7119  df-inf 7120  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-xneg 9936  df-xadd 9937  df-ioo 10056  df-seqfrec 10637  df-exp 10728  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-rest 13240  df-topgen 13259  df-psmet 14472  df-xmet 14473  df-met 14474  df-bl 14475  df-mopn 14476  df-top 14637  df-topon 14650  df-bases 14682  df-cn 14827  df-cnp 14828  df-tx 14892  df-cncf 15210
This theorem is referenced by:  ivthdich  15292
  Copyright terms: Public domain W3C validator