ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthdichlem Unicode version

Theorem ivthdichlem 14887
Description: Lemma for ivthdich 14889. The result, with a few notational conveniences. (Contributed by Jim Kingdon, 22-Jul-2025.)
Hypotheses
Ref Expression
hover.f  |-  F  =  ( x  e.  RR  |->  sup ( {inf ( { x ,  0 } ,  RR ,  <  ) ,  ( x  - 
1 ) } ,  RR ,  <  ) )
ivthdichlem.z  |-  ( ph  ->  Z  e.  RR )
ivthdichlem.i  |-  ( ph  ->  A. f ( f  e.  ( RR -cn-> RR )  ->  A. a  e.  RR  A. b  e.  RR  ( ( a  <  b  /\  (
f `  a )  <  0  /\  0  < 
( f `  b
) )  ->  E. x  e.  RR  ( a  < 
x  /\  x  <  b  /\  ( f `  x )  =  0 ) ) ) )
Assertion
Ref Expression
ivthdichlem  |-  ( ph  ->  ( Z  <_  0  \/  0  <_  Z ) )
Distinct variable groups:    F, a, b, f, x    Z, a, b, f, x    ph, x
Allowed substitution hints:    ph( f, a, b)

Proof of Theorem ivthdichlem
Dummy variable  c is distinct from all other variables.
StepHypRef Expression
1 ivthdichlem.z . . . 4  |-  ( ph  ->  Z  e.  RR )
2 peano2rem 8293 . . . 4  |-  ( Z  e.  RR  ->  ( Z  -  1 )  e.  RR )
31, 2syl 14 . . 3  |-  ( ph  ->  ( Z  -  1 )  e.  RR )
4 2re 9060 . . . . 5  |-  2  e.  RR
54a1i 9 . . . 4  |-  ( ph  ->  2  e.  RR )
61, 5readdcld 8056 . . 3  |-  ( ph  ->  ( Z  +  2 )  e.  RR )
71ltm1d 8959 . . . 4  |-  ( ph  ->  ( Z  -  1 )  <  Z )
8 2rp 9733 . . . . . 6  |-  2  e.  RR+
98a1i 9 . . . . 5  |-  ( ph  ->  2  e.  RR+ )
101, 9ltaddrpd 9805 . . . 4  |-  ( ph  ->  Z  <  ( Z  +  2 ) )
113, 1, 6, 7, 10lttrd 8152 . . 3  |-  ( ph  ->  ( Z  -  1 )  <  ( Z  +  2 ) )
12 hover.f . . . . 5  |-  F  =  ( x  e.  RR  |->  sup ( {inf ( { x ,  0 } ,  RR ,  <  ) ,  ( x  - 
1 ) } ,  RR ,  <  ) )
1312hovercncf 14882 . . . 4  |-  F  e.  ( RR -cn-> RR )
1413a1i 9 . . 3  |-  ( ph  ->  F  e.  ( RR
-cn-> RR ) )
1512hovera 14883 . . . . 5  |-  ( Z  e.  RR  ->  ( F `  ( Z  -  1 ) )  <  Z )
161, 15syl 14 . . . 4  |-  ( ph  ->  ( F `  ( Z  -  1 ) )  <  Z )
1712hoverb 14884 . . . . 5  |-  ( Z  e.  RR  ->  Z  <  ( F `  ( Z  +  2 ) ) )
181, 17syl 14 . . . 4  |-  ( ph  ->  Z  <  ( F `
 ( Z  + 
2 ) ) )
1916, 18jca 306 . . 3  |-  ( ph  ->  ( ( F `  ( Z  -  1
) )  <  Z  /\  Z  <  ( F `
 ( Z  + 
2 ) ) ) )
20 ivthdichlem.i . . 3  |-  ( ph  ->  A. f ( f  e.  ( RR -cn-> RR )  ->  A. a  e.  RR  A. b  e.  RR  ( ( a  <  b  /\  (
f `  a )  <  0  /\  0  < 
( f `  b
) )  ->  E. x  e.  RR  ( a  < 
x  /\  x  <  b  /\  ( f `  x )  =  0 ) ) ) )
213, 6, 1, 11, 14, 19, 20ivthreinc 14881 . 2  |-  ( ph  ->  E. c  e.  ( ( Z  -  1 ) (,) ( Z  +  2 ) ) ( F `  c
)  =  Z )
22 0red 8027 . . . . 5  |-  ( (
ph  /\  ( c  e.  ( ( Z  - 
1 ) (,) ( Z  +  2 ) )  /\  ( F `
 c )  =  Z ) )  -> 
0  e.  RR )
23 1red 8041 . . . . 5  |-  ( (
ph  /\  ( c  e.  ( ( Z  - 
1 ) (,) ( Z  +  2 ) )  /\  ( F `
 c )  =  Z ) )  -> 
1  e.  RR )
24 elioore 9987 . . . . . 6  |-  ( c  e.  ( ( Z  -  1 ) (,) ( Z  +  2 ) )  ->  c  e.  RR )
2524ad2antrl 490 . . . . 5  |-  ( (
ph  /\  ( c  e.  ( ( Z  - 
1 ) (,) ( Z  +  2 ) )  /\  ( F `
 c )  =  Z ) )  -> 
c  e.  RR )
26 0lt1 8153 . . . . . 6  |-  0  <  1
27 axltwlin 8094 . . . . . 6  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  c  e.  RR )  ->  (
0  <  1  ->  ( 0  <  c  \/  c  <  1 ) ) )
2826, 27mpi 15 . . . . 5  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  c  e.  RR )  ->  (
0  <  c  \/  c  <  1 ) )
2922, 23, 25, 28syl3anc 1249 . . . 4  |-  ( (
ph  /\  ( c  e.  ( ( Z  - 
1 ) (,) ( Z  +  2 ) )  /\  ( F `
 c )  =  Z ) )  -> 
( 0  <  c  \/  c  <  1
) )
3029orcomd 730 . . 3  |-  ( (
ph  /\  ( c  e.  ( ( Z  - 
1 ) (,) ( Z  +  2 ) )  /\  ( F `
 c )  =  Z ) )  -> 
( c  <  1  \/  0  <  c ) )
31 simplrr 536 . . . . . 6  |-  ( ( ( ph  /\  (
c  e.  ( ( Z  -  1 ) (,) ( Z  + 
2 ) )  /\  ( F `  c )  =  Z ) )  /\  c  <  1
)  ->  ( F `  c )  =  Z )
3212hoverlt1 14885 . . . . . . 7  |-  ( ( c  e.  RR  /\  c  <  1 )  -> 
( F `  c
)  <_  0 )
3325, 32sylan 283 . . . . . 6  |-  ( ( ( ph  /\  (
c  e.  ( ( Z  -  1 ) (,) ( Z  + 
2 ) )  /\  ( F `  c )  =  Z ) )  /\  c  <  1
)  ->  ( F `  c )  <_  0
)
3431, 33eqbrtrrd 4057 . . . . 5  |-  ( ( ( ph  /\  (
c  e.  ( ( Z  -  1 ) (,) ( Z  + 
2 ) )  /\  ( F `  c )  =  Z ) )  /\  c  <  1
)  ->  Z  <_  0 )
3534ex 115 . . . 4  |-  ( (
ph  /\  ( c  e.  ( ( Z  - 
1 ) (,) ( Z  +  2 ) )  /\  ( F `
 c )  =  Z ) )  -> 
( c  <  1  ->  Z  <_  0 ) )
3612hovergt0 14886 . . . . . . 7  |-  ( ( c  e.  RR  /\  0  <  c )  -> 
0  <_  ( F `  c ) )
3725, 36sylan 283 . . . . . 6  |-  ( ( ( ph  /\  (
c  e.  ( ( Z  -  1 ) (,) ( Z  + 
2 ) )  /\  ( F `  c )  =  Z ) )  /\  0  <  c
)  ->  0  <_  ( F `  c ) )
38 simplrr 536 . . . . . 6  |-  ( ( ( ph  /\  (
c  e.  ( ( Z  -  1 ) (,) ( Z  + 
2 ) )  /\  ( F `  c )  =  Z ) )  /\  0  <  c
)  ->  ( F `  c )  =  Z )
3937, 38breqtrd 4059 . . . . 5  |-  ( ( ( ph  /\  (
c  e.  ( ( Z  -  1 ) (,) ( Z  + 
2 ) )  /\  ( F `  c )  =  Z ) )  /\  0  <  c
)  ->  0  <_  Z )
4039ex 115 . . . 4  |-  ( (
ph  /\  ( c  e.  ( ( Z  - 
1 ) (,) ( Z  +  2 ) )  /\  ( F `
 c )  =  Z ) )  -> 
( 0  <  c  ->  0  <_  Z )
)
4135, 40orim12d 787 . . 3  |-  ( (
ph  /\  ( c  e.  ( ( Z  - 
1 ) (,) ( Z  +  2 ) )  /\  ( F `
 c )  =  Z ) )  -> 
( ( c  <  1  \/  0  < 
c )  ->  ( Z  <_  0  \/  0  <_  Z ) ) )
4230, 41mpd 13 . 2  |-  ( (
ph  /\  ( c  e.  ( ( Z  - 
1 ) (,) ( Z  +  2 ) )  /\  ( F `
 c )  =  Z ) )  -> 
( Z  <_  0  \/  0  <_  Z ) )
4321, 42rexlimddv 2619 1  |-  ( ph  ->  ( Z  <_  0  \/  0  <_  Z ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    /\ w3a 980   A.wal 1362    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476   {cpr 3623   class class class wbr 4033    |-> cmpt 4094   ` cfv 5258  (class class class)co 5922   supcsup 7048  infcinf 7049   RRcr 7878   0cc0 7879   1c1 7880    + caddc 7882    < clt 8061    <_ cle 8062    - cmin 8197   2c2 9041   RR+crp 9728   (,)cioo 9963   -cn->ccncf 14806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999  ax-addf 8001
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-map 6709  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-xneg 9847  df-xadd 9848  df-ioo 9967  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-rest 12912  df-topgen 12931  df-psmet 14099  df-xmet 14100  df-met 14101  df-bl 14102  df-mopn 14103  df-top 14234  df-topon 14247  df-bases 14279  df-cn 14424  df-cnp 14425  df-tx 14489  df-cncf 14807
This theorem is referenced by:  ivthdich  14889
  Copyright terms: Public domain W3C validator