ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthdich Unicode version

Theorem ivthdich 15292
Description: The intermediate value theorem implies real number dichotomy. Because real number dichotomy (also known as analytic LLPO) is a constructive taboo, this means we will be unable to prove the intermediate value theorem as stated here (although versions with additional conditions, such as ivthinc 15282 for strictly monotonic functions, can be proved).

The proof is via a function which we call the hover function and which is also described in Section 5.1 of [Bauer], p. 493. Consider any real number  z. We want to show that  z  <_  0  \/  0  <_  z. Because of hovercncf 15285, hovera 15286, and hoverb 15287, we are able to apply the intermediate value theorem to get a value  c such that the hover function at  c equals  z. By axltwlin 8182,  c  <  1 or  0  <  c, and that leads to  z  <_  0 by hoverlt1 15288 or 
0  <_  z by hovergt0 15289. (Contributed by Jim Kingdon and Mario Carneiro, 22-Jul-2025.)

Assertion
Ref Expression
ivthdich  |-  ( A. f ( f  e.  ( RR -cn-> RR )  ->  A. a  e.  RR  A. b  e.  RR  (
( a  <  b  /\  ( f `  a
)  <  0  /\  0  <  ( f `  b ) )  ->  E. x  e.  RR  ( a  <  x  /\  x  <  b  /\  ( f `  x
)  =  0 ) ) )  ->  A. r  e.  RR  A. s  e.  RR  ( r  <_ 
s  \/  s  <_ 
r ) )
Distinct variable groups:    a, b, f, x    s, r

Proof of Theorem ivthdich
Dummy variables  q  t  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4066 . . . . . . . . . 10  |-  ( x  =  q  ->  (
a  <  x  <->  a  <  q ) )
2 breq1 4065 . . . . . . . . . 10  |-  ( x  =  q  ->  (
x  <  b  <->  q  <  b ) )
3 fveqeq2 5612 . . . . . . . . . 10  |-  ( x  =  q  ->  (
( f `  x
)  =  0  <->  (
f `  q )  =  0 ) )
41, 2, 33anbi123d 1327 . . . . . . . . 9  |-  ( x  =  q  ->  (
( a  <  x  /\  x  <  b  /\  ( f `  x
)  =  0 )  <-> 
( a  <  q  /\  q  <  b  /\  ( f `  q
)  =  0 ) ) )
54cbvrexv 2746 . . . . . . . 8  |-  ( E. x  e.  RR  (
a  <  x  /\  x  <  b  /\  (
f `  x )  =  0 )  <->  E. q  e.  RR  ( a  < 
q  /\  q  <  b  /\  ( f `  q )  =  0 ) )
65imbi2i 226 . . . . . . 7  |-  ( ( ( a  <  b  /\  ( f `  a
)  <  0  /\  0  <  ( f `  b ) )  ->  E. x  e.  RR  ( a  <  x  /\  x  <  b  /\  ( f `  x
)  =  0 ) )  <->  ( ( a  <  b  /\  (
f `  a )  <  0  /\  0  < 
( f `  b
) )  ->  E. q  e.  RR  ( a  < 
q  /\  q  <  b  /\  ( f `  q )  =  0 ) ) )
762ralbii 2518 . . . . . 6  |-  ( A. a  e.  RR  A. b  e.  RR  ( ( a  <  b  /\  (
f `  a )  <  0  /\  0  < 
( f `  b
) )  ->  E. x  e.  RR  ( a  < 
x  /\  x  <  b  /\  ( f `  x )  =  0 ) )  <->  A. a  e.  RR  A. b  e.  RR  ( ( a  <  b  /\  (
f `  a )  <  0  /\  0  < 
( f `  b
) )  ->  E. q  e.  RR  ( a  < 
q  /\  q  <  b  /\  ( f `  q )  =  0 ) ) )
87imbi2i 226 . . . . 5  |-  ( ( f  e.  ( RR
-cn-> RR )  ->  A. a  e.  RR  A. b  e.  RR  ( ( a  <  b  /\  (
f `  a )  <  0  /\  0  < 
( f `  b
) )  ->  E. x  e.  RR  ( a  < 
x  /\  x  <  b  /\  ( f `  x )  =  0 ) ) )  <->  ( f  e.  ( RR -cn-> RR )  ->  A. a  e.  RR  A. b  e.  RR  (
( a  <  b  /\  ( f `  a
)  <  0  /\  0  <  ( f `  b ) )  ->  E. q  e.  RR  ( a  <  q  /\  q  <  b  /\  ( f `  q
)  =  0 ) ) ) )
98albii 1496 . . . 4  |-  ( A. f ( f  e.  ( RR -cn-> RR )  ->  A. a  e.  RR  A. b  e.  RR  (
( a  <  b  /\  ( f `  a
)  <  0  /\  0  <  ( f `  b ) )  ->  E. x  e.  RR  ( a  <  x  /\  x  <  b  /\  ( f `  x
)  =  0 ) ) )  <->  A. f
( f  e.  ( RR -cn-> RR )  ->  A. a  e.  RR  A. b  e.  RR  ( ( a  <  b  /\  (
f `  a )  <  0  /\  0  < 
( f `  b
) )  ->  E. q  e.  RR  ( a  < 
q  /\  q  <  b  /\  ( f `  q )  =  0 ) ) ) )
10 preq1 3723 . . . . . . . . 9  |-  ( t  =  x  ->  { t ,  0 }  =  { x ,  0 } )
1110infeq1d 7147 . . . . . . . 8  |-  ( t  =  x  -> inf ( { t ,  0 } ,  RR ,  <  )  = inf ( { x ,  0 } ,  RR ,  <  ) )
12 oveq1 5981 . . . . . . . 8  |-  ( t  =  x  ->  (
t  -  1 )  =  ( x  - 
1 ) )
1311, 12preq12d 3731 . . . . . . 7  |-  ( t  =  x  ->  {inf ( { t ,  0 } ,  RR ,  <  ) ,  ( t  -  1 ) }  =  {inf ( { x ,  0 } ,  RR ,  <  ) ,  ( x  - 
1 ) } )
1413supeq1d 7122 . . . . . 6  |-  ( t  =  x  ->  sup ( {inf ( { t ,  0 } ,  RR ,  <  ) ,  ( t  -  1 ) } ,  RR ,  <  )  =  sup ( {inf ( { x ,  0 } ,  RR ,  <  ) ,  ( x  -  1 ) } ,  RR ,  <  ) )
1514cbvmptv 4159 . . . . 5  |-  ( t  e.  RR  |->  sup ( {inf ( { t ,  0 } ,  RR ,  <  ) ,  ( t  -  1 ) } ,  RR ,  <  ) )  =  ( x  e.  RR  |->  sup ( {inf ( { x ,  0 } ,  RR ,  <  ) ,  ( x  - 
1 ) } ,  RR ,  <  ) )
16 simpr 110 . . . . 5  |-  ( ( A. f ( f  e.  ( RR -cn-> RR )  ->  A. a  e.  RR  A. b  e.  RR  ( ( a  <  b  /\  (
f `  a )  <  0  /\  0  < 
( f `  b
) )  ->  E. q  e.  RR  ( a  < 
q  /\  q  <  b  /\  ( f `  q )  =  0 ) ) )  /\  z  e.  RR )  ->  z  e.  RR )
179biimpri 133 . . . . . 6  |-  ( A. f ( f  e.  ( RR -cn-> RR )  ->  A. a  e.  RR  A. b  e.  RR  (
( a  <  b  /\  ( f `  a
)  <  0  /\  0  <  ( f `  b ) )  ->  E. q  e.  RR  ( a  <  q  /\  q  <  b  /\  ( f `  q
)  =  0 ) ) )  ->  A. f
( f  e.  ( RR -cn-> RR )  ->  A. a  e.  RR  A. b  e.  RR  ( ( a  <  b  /\  (
f `  a )  <  0  /\  0  < 
( f `  b
) )  ->  E. x  e.  RR  ( a  < 
x  /\  x  <  b  /\  ( f `  x )  =  0 ) ) ) )
1817adantr 276 . . . . 5  |-  ( ( A. f ( f  e.  ( RR -cn-> RR )  ->  A. a  e.  RR  A. b  e.  RR  ( ( a  <  b  /\  (
f `  a )  <  0  /\  0  < 
( f `  b
) )  ->  E. q  e.  RR  ( a  < 
q  /\  q  <  b  /\  ( f `  q )  =  0 ) ) )  /\  z  e.  RR )  ->  A. f ( f  e.  ( RR -cn-> RR )  ->  A. a  e.  RR  A. b  e.  RR  ( ( a  <  b  /\  (
f `  a )  <  0  /\  0  < 
( f `  b
) )  ->  E. x  e.  RR  ( a  < 
x  /\  x  <  b  /\  ( f `  x )  =  0 ) ) ) )
1915, 16, 18ivthdichlem 15290 . . . 4  |-  ( ( A. f ( f  e.  ( RR -cn-> RR )  ->  A. a  e.  RR  A. b  e.  RR  ( ( a  <  b  /\  (
f `  a )  <  0  /\  0  < 
( f `  b
) )  ->  E. q  e.  RR  ( a  < 
q  /\  q  <  b  /\  ( f `  q )  =  0 ) ) )  /\  z  e.  RR )  ->  ( z  <_  0  \/  0  <_  z ) )
209, 19sylanb 284 . . 3  |-  ( ( A. f ( f  e.  ( RR -cn-> RR )  ->  A. a  e.  RR  A. b  e.  RR  ( ( a  <  b  /\  (
f `  a )  <  0  /\  0  < 
( f `  b
) )  ->  E. x  e.  RR  ( a  < 
x  /\  x  <  b  /\  ( f `  x )  =  0 ) ) )  /\  z  e.  RR )  ->  ( z  <_  0  \/  0  <_  z ) )
2120ralrimiva 2583 . 2  |-  ( A. f ( f  e.  ( RR -cn-> RR )  ->  A. a  e.  RR  A. b  e.  RR  (
( a  <  b  /\  ( f `  a
)  <  0  /\  0  <  ( f `  b ) )  ->  E. x  e.  RR  ( a  <  x  /\  x  <  b  /\  ( f `  x
)  =  0 ) ) )  ->  A. z  e.  RR  ( z  <_ 
0  \/  0  <_ 
z ) )
22 dich0 15291 . 2  |-  ( A. z  e.  RR  (
z  <_  0  \/  0  <_  z )  <->  A. r  e.  RR  A. s  e.  RR  ( r  <_ 
s  \/  s  <_ 
r ) )
2321, 22sylib 122 1  |-  ( A. f ( f  e.  ( RR -cn-> RR )  ->  A. a  e.  RR  A. b  e.  RR  (
( a  <  b  /\  ( f `  a
)  <  0  /\  0  <  ( f `  b ) )  ->  E. x  e.  RR  ( a  <  x  /\  x  <  b  /\  ( f `  x
)  =  0 ) ) )  ->  A. r  e.  RR  A. s  e.  RR  ( r  <_ 
s  \/  s  <_ 
r ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 712    /\ w3a 983   A.wal 1373    = wceq 1375    e. wcel 2180   A.wral 2488   E.wrex 2489   {cpr 3647   class class class wbr 4062    |-> cmpt 4124   ` cfv 5294  (class class class)co 5974   supcsup 7117  infcinf 7118   RRcr 7966   0cc0 7967   1c1 7968    < clt 8149    <_ cle 8150    - cmin 8285   -cn->ccncf 15209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087  ax-addf 8089
This theorem depends on definitions:  df-bi 117  df-stab 835  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-map 6767  df-sup 7119  df-inf 7120  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-xneg 9936  df-xadd 9937  df-ioo 10056  df-seqfrec 10637  df-exp 10728  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-rest 13240  df-topgen 13259  df-psmet 14472  df-xmet 14473  df-met 14474  df-bl 14475  df-mopn 14476  df-top 14637  df-topon 14650  df-bases 14682  df-cn 14827  df-cnp 14828  df-tx 14892  df-cncf 15210
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator