ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ushgredgedgloop GIF version

Theorem ushgredgedgloop 16034
Description: In a simple hypergraph there is a 1-1 onto mapping between the indexed edges being loops at a fixed vertex 𝑁 and the set of loops at this vertex 𝑁. (Contributed by AV, 11-Dec-2020.) (Revised by AV, 6-Jul-2022.)
Hypotheses
Ref Expression
ushgredgedgloop.e 𝐸 = (Edg‘𝐺)
ushgredgedgloop.i 𝐼 = (iEdg‘𝐺)
ushgredgedgloop.a 𝐴 = {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}
ushgredgedgloop.b 𝐵 = {𝑒𝐸𝑒 = {𝑁}}
ushgredgedgloop.f 𝐹 = (𝑥𝐴 ↦ (𝐼𝑥))
Assertion
Ref Expression
ushgredgedgloop ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → 𝐹:𝐴1-1-onto𝐵)
Distinct variable groups:   𝐵,𝑒   𝑒,𝐸,𝑖   𝑒,𝐺,𝑖,𝑥   𝑒,𝐼,𝑖,𝑥   𝑒,𝑁,𝑖,𝑥   𝑒,𝑉,𝑖,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑒,𝑖)   𝐵(𝑥,𝑖)   𝐸(𝑥)   𝐹(𝑥,𝑒,𝑖)

Proof of Theorem ushgredgedgloop
Dummy variables 𝑓 𝑗 𝑝 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
2 ushgredgedgloop.i . . . . 5 𝐼 = (iEdg‘𝐺)
31, 2ushgrfm 15882 . . . 4 (𝐺 ∈ USHGraph → 𝐼:dom 𝐼1-1→{𝑝 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑤 𝑤𝑝})
43adantr 276 . . 3 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → 𝐼:dom 𝐼1-1→{𝑝 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑤 𝑤𝑝})
5 ssrab2 3309 . . 3 {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} ⊆ dom 𝐼
6 f1ores 5589 . . 3 ((𝐼:dom 𝐼1-1→{𝑝 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑤 𝑤𝑝} ∧ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} ⊆ dom 𝐼) → (𝐼 ↾ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}):{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}–1-1-onto→(𝐼 “ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}))
74, 5, 6sylancl 413 . 2 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → (𝐼 ↾ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}):{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}–1-1-onto→(𝐼 “ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}))
8 ushgredgedgloop.f . . . . 5 𝐹 = (𝑥𝐴 ↦ (𝐼𝑥))
9 ushgredgedgloop.a . . . . . . 7 𝐴 = {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}
109a1i 9 . . . . . 6 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → 𝐴 = {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}})
11 eqidd 2230 . . . . . 6 (((𝐺 ∈ USHGraph ∧ 𝑁𝑉) ∧ 𝑥𝐴) → (𝐼𝑥) = (𝐼𝑥))
1210, 11mpteq12dva 4165 . . . . 5 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → (𝑥𝐴 ↦ (𝐼𝑥)) = (𝑥 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} ↦ (𝐼𝑥)))
138, 12eqtrid 2274 . . . 4 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → 𝐹 = (𝑥 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} ↦ (𝐼𝑥)))
14 f1f 5533 . . . . . . 7 (𝐼:dom 𝐼1-1→{𝑝 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑤 𝑤𝑝} → 𝐼:dom 𝐼⟶{𝑝 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑤 𝑤𝑝})
153, 14syl 14 . . . . . 6 (𝐺 ∈ USHGraph → 𝐼:dom 𝐼⟶{𝑝 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑤 𝑤𝑝})
165a1i 9 . . . . . 6 (𝐺 ∈ USHGraph → {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} ⊆ dom 𝐼)
1715, 16feqresmpt 5690 . . . . 5 (𝐺 ∈ USHGraph → (𝐼 ↾ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}) = (𝑥 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} ↦ (𝐼𝑥)))
1817adantr 276 . . . 4 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → (𝐼 ↾ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}) = (𝑥 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} ↦ (𝐼𝑥)))
1913, 18eqtr4d 2265 . . 3 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → 𝐹 = (𝐼 ↾ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}))
20 ushgruhgr 15888 . . . . . . . 8 (𝐺 ∈ USHGraph → 𝐺 ∈ UHGraph)
21 eqid 2229 . . . . . . . . 9 (iEdg‘𝐺) = (iEdg‘𝐺)
2221uhgrfun 15885 . . . . . . . 8 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
2320, 22syl 14 . . . . . . 7 (𝐺 ∈ USHGraph → Fun (iEdg‘𝐺))
242funeqi 5339 . . . . . . 7 (Fun 𝐼 ↔ Fun (iEdg‘𝐺))
2523, 24sylibr 134 . . . . . 6 (𝐺 ∈ USHGraph → Fun 𝐼)
2625adantr 276 . . . . 5 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → Fun 𝐼)
27 dfimafn 5684 . . . . 5 ((Fun 𝐼 ∧ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} ⊆ dom 𝐼) → (𝐼 “ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}) = {𝑒 ∣ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑒})
2826, 5, 27sylancl 413 . . . 4 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → (𝐼 “ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}) = {𝑒 ∣ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑒})
29 fveqeq2 5638 . . . . . . . . . 10 (𝑖 = 𝑗 → ((𝐼𝑖) = {𝑁} ↔ (𝐼𝑗) = {𝑁}))
3029elrab 2959 . . . . . . . . 9 (𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} ↔ (𝑗 ∈ dom 𝐼 ∧ (𝐼𝑗) = {𝑁}))
31 simpl 109 . . . . . . . . . . . . . . 15 ((𝑗 ∈ dom 𝐼 ∧ (𝐼𝑗) = {𝑁}) → 𝑗 ∈ dom 𝐼)
32 fvelrn 5768 . . . . . . . . . . . . . . . 16 ((Fun 𝐼𝑗 ∈ dom 𝐼) → (𝐼𝑗) ∈ ran 𝐼)
332eqcomi 2233 . . . . . . . . . . . . . . . . 17 (iEdg‘𝐺) = 𝐼
3433rneqi 4952 . . . . . . . . . . . . . . . 16 ran (iEdg‘𝐺) = ran 𝐼
3532, 34eleqtrrdi 2323 . . . . . . . . . . . . . . 15 ((Fun 𝐼𝑗 ∈ dom 𝐼) → (𝐼𝑗) ∈ ran (iEdg‘𝐺))
3626, 31, 35syl2an 289 . . . . . . . . . . . . . 14 (((𝐺 ∈ USHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼𝑗) = {𝑁})) → (𝐼𝑗) ∈ ran (iEdg‘𝐺))
37363adant3 1041 . . . . . . . . . . . . 13 (((𝐺 ∈ USHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼𝑗) = {𝑁}) ∧ (𝐼𝑗) = 𝑓) → (𝐼𝑗) ∈ ran (iEdg‘𝐺))
38 eleq1 2292 . . . . . . . . . . . . . . 15 (𝑓 = (𝐼𝑗) → (𝑓 ∈ ran (iEdg‘𝐺) ↔ (𝐼𝑗) ∈ ran (iEdg‘𝐺)))
3938eqcoms 2232 . . . . . . . . . . . . . 14 ((𝐼𝑗) = 𝑓 → (𝑓 ∈ ran (iEdg‘𝐺) ↔ (𝐼𝑗) ∈ ran (iEdg‘𝐺)))
40393ad2ant3 1044 . . . . . . . . . . . . 13 (((𝐺 ∈ USHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼𝑗) = {𝑁}) ∧ (𝐼𝑗) = 𝑓) → (𝑓 ∈ ran (iEdg‘𝐺) ↔ (𝐼𝑗) ∈ ran (iEdg‘𝐺)))
4137, 40mpbird 167 . . . . . . . . . . . 12 (((𝐺 ∈ USHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼𝑗) = {𝑁}) ∧ (𝐼𝑗) = 𝑓) → 𝑓 ∈ ran (iEdg‘𝐺))
42 ushgredgedgloop.e . . . . . . . . . . . . . . . 16 𝐸 = (Edg‘𝐺)
43 edgvalg 15868 . . . . . . . . . . . . . . . 16 (𝐺 ∈ USHGraph → (Edg‘𝐺) = ran (iEdg‘𝐺))
4442, 43eqtrid 2274 . . . . . . . . . . . . . . 15 (𝐺 ∈ USHGraph → 𝐸 = ran (iEdg‘𝐺))
4544eleq2d 2299 . . . . . . . . . . . . . 14 (𝐺 ∈ USHGraph → (𝑓𝐸𝑓 ∈ ran (iEdg‘𝐺)))
4645adantr 276 . . . . . . . . . . . . 13 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → (𝑓𝐸𝑓 ∈ ran (iEdg‘𝐺)))
47463ad2ant1 1042 . . . . . . . . . . . 12 (((𝐺 ∈ USHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼𝑗) = {𝑁}) ∧ (𝐼𝑗) = 𝑓) → (𝑓𝐸𝑓 ∈ ran (iEdg‘𝐺)))
4841, 47mpbird 167 . . . . . . . . . . 11 (((𝐺 ∈ USHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼𝑗) = {𝑁}) ∧ (𝐼𝑗) = 𝑓) → 𝑓𝐸)
49 eqeq1 2236 . . . . . . . . . . . . . . 15 ((𝐼𝑗) = 𝑓 → ((𝐼𝑗) = {𝑁} ↔ 𝑓 = {𝑁}))
5049biimpcd 159 . . . . . . . . . . . . . 14 ((𝐼𝑗) = {𝑁} → ((𝐼𝑗) = 𝑓𝑓 = {𝑁}))
5150adantl 277 . . . . . . . . . . . . 13 ((𝑗 ∈ dom 𝐼 ∧ (𝐼𝑗) = {𝑁}) → ((𝐼𝑗) = 𝑓𝑓 = {𝑁}))
5251a1i 9 . . . . . . . . . . . 12 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → ((𝑗 ∈ dom 𝐼 ∧ (𝐼𝑗) = {𝑁}) → ((𝐼𝑗) = 𝑓𝑓 = {𝑁})))
53523imp 1217 . . . . . . . . . . 11 (((𝐺 ∈ USHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼𝑗) = {𝑁}) ∧ (𝐼𝑗) = 𝑓) → 𝑓 = {𝑁})
5448, 53jca 306 . . . . . . . . . 10 (((𝐺 ∈ USHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼𝑗) = {𝑁}) ∧ (𝐼𝑗) = 𝑓) → (𝑓𝐸𝑓 = {𝑁}))
55543exp 1226 . . . . . . . . 9 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → ((𝑗 ∈ dom 𝐼 ∧ (𝐼𝑗) = {𝑁}) → ((𝐼𝑗) = 𝑓 → (𝑓𝐸𝑓 = {𝑁}))))
5630, 55biimtrid 152 . . . . . . . 8 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → (𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} → ((𝐼𝑗) = 𝑓 → (𝑓𝐸𝑓 = {𝑁}))))
5756rexlimdv 2647 . . . . . . 7 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → (∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑓 → (𝑓𝐸𝑓 = {𝑁})))
5823funfnd 5349 . . . . . . . . . . . 12 (𝐺 ∈ USHGraph → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
59 fvelrnb 5683 . . . . . . . . . . . 12 ((iEdg‘𝐺) Fn dom (iEdg‘𝐺) → (𝑓 ∈ ran (iEdg‘𝐺) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = 𝑓))
6058, 59syl 14 . . . . . . . . . . 11 (𝐺 ∈ USHGraph → (𝑓 ∈ ran (iEdg‘𝐺) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = 𝑓))
6133dmeqi 4924 . . . . . . . . . . . . . . . . . . . . . 22 dom (iEdg‘𝐺) = dom 𝐼
6261eleq2i 2296 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ dom (iEdg‘𝐺) ↔ 𝑗 ∈ dom 𝐼)
6362biimpi 120 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ dom (iEdg‘𝐺) → 𝑗 ∈ dom 𝐼)
6463adantr 276 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓) → 𝑗 ∈ dom 𝐼)
6564adantl 277 . . . . . . . . . . . . . . . . . 18 (((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → 𝑗 ∈ dom 𝐼)
6633fveq1i 5630 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((iEdg‘𝐺)‘𝑗) = (𝐼𝑗)
6766eqeq2i 2240 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = ((iEdg‘𝐺)‘𝑗) ↔ 𝑓 = (𝐼𝑗))
6867biimpi 120 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = ((iEdg‘𝐺)‘𝑗) → 𝑓 = (𝐼𝑗))
6968eqcoms 2232 . . . . . . . . . . . . . . . . . . . . . . 23 (((iEdg‘𝐺)‘𝑗) = 𝑓𝑓 = (𝐼𝑗))
7069eqeq1d 2238 . . . . . . . . . . . . . . . . . . . . . 22 (((iEdg‘𝐺)‘𝑗) = 𝑓 → (𝑓 = {𝑁} ↔ (𝐼𝑗) = {𝑁}))
7170biimpcd 159 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = {𝑁} → (((iEdg‘𝐺)‘𝑗) = 𝑓 → (𝐼𝑗) = {𝑁}))
7271adantl 277 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) → (((iEdg‘𝐺)‘𝑗) = 𝑓 → (𝐼𝑗) = {𝑁}))
7372adantld 278 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) → ((𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓) → (𝐼𝑗) = {𝑁}))
7473imp 124 . . . . . . . . . . . . . . . . . 18 (((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → (𝐼𝑗) = {𝑁})
7565, 74jca 306 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → (𝑗 ∈ dom 𝐼 ∧ (𝐼𝑗) = {𝑁}))
7675, 30sylibr 134 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → 𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}})
7766eqeq1i 2237 . . . . . . . . . . . . . . . . . . 19 (((iEdg‘𝐺)‘𝑗) = 𝑓 ↔ (𝐼𝑗) = 𝑓)
7877biimpi 120 . . . . . . . . . . . . . . . . . 18 (((iEdg‘𝐺)‘𝑗) = 𝑓 → (𝐼𝑗) = 𝑓)
7978adantl 277 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓) → (𝐼𝑗) = 𝑓)
8079adantl 277 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → (𝐼𝑗) = 𝑓)
8176, 80jca 306 . . . . . . . . . . . . . . 15 (((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → (𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} ∧ (𝐼𝑗) = 𝑓))
8281ex 115 . . . . . . . . . . . . . 14 ((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) → ((𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓) → (𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} ∧ (𝐼𝑗) = 𝑓)))
8382reximdv2 2629 . . . . . . . . . . . . 13 ((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) → (∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = 𝑓 → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑓))
8483ex 115 . . . . . . . . . . . 12 (𝐺 ∈ USHGraph → (𝑓 = {𝑁} → (∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = 𝑓 → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑓)))
8584com23 78 . . . . . . . . . . 11 (𝐺 ∈ USHGraph → (∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = 𝑓 → (𝑓 = {𝑁} → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑓)))
8660, 85sylbid 150 . . . . . . . . . 10 (𝐺 ∈ USHGraph → (𝑓 ∈ ran (iEdg‘𝐺) → (𝑓 = {𝑁} → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑓)))
8745, 86sylbid 150 . . . . . . . . 9 (𝐺 ∈ USHGraph → (𝑓𝐸 → (𝑓 = {𝑁} → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑓)))
8887impd 254 . . . . . . . 8 (𝐺 ∈ USHGraph → ((𝑓𝐸𝑓 = {𝑁}) → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑓))
8988adantr 276 . . . . . . 7 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → ((𝑓𝐸𝑓 = {𝑁}) → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑓))
9057, 89impbid 129 . . . . . 6 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → (∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑓 ↔ (𝑓𝐸𝑓 = {𝑁})))
91 vex 2802 . . . . . . 7 𝑓 ∈ V
92 eqeq2 2239 . . . . . . . 8 (𝑒 = 𝑓 → ((𝐼𝑗) = 𝑒 ↔ (𝐼𝑗) = 𝑓))
9392rexbidv 2531 . . . . . . 7 (𝑒 = 𝑓 → (∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑒 ↔ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑓))
9491, 93elab 2947 . . . . . 6 (𝑓 ∈ {𝑒 ∣ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑒} ↔ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑓)
95 eqeq1 2236 . . . . . . 7 (𝑒 = 𝑓 → (𝑒 = {𝑁} ↔ 𝑓 = {𝑁}))
96 ushgredgedgloop.b . . . . . . 7 𝐵 = {𝑒𝐸𝑒 = {𝑁}}
9795, 96elrab2 2962 . . . . . 6 (𝑓𝐵 ↔ (𝑓𝐸𝑓 = {𝑁}))
9890, 94, 973bitr4g 223 . . . . 5 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → (𝑓 ∈ {𝑒 ∣ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑒} ↔ 𝑓𝐵))
9998eqrdv 2227 . . . 4 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → {𝑒 ∣ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}} (𝐼𝑗) = 𝑒} = 𝐵)
10028, 99eqtr2d 2263 . . 3 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → 𝐵 = (𝐼 “ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}))
10119, 10, 100f1oeq123d 5568 . 2 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → (𝐹:𝐴1-1-onto𝐵 ↔ (𝐼 ↾ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}):{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}}–1-1-onto→(𝐼 “ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑁}})))
1027, 101mpbird 167 1 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → 𝐹:𝐴1-1-onto𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wex 1538  wcel 2200  {cab 2215  wrex 2509  {crab 2512  wss 3197  𝒫 cpw 3649  {csn 3666  cmpt 4145  dom cdm 4719  ran crn 4720  cres 4721  cima 4722  Fun wfun 5312   Fn wfn 5313  wf 5314  1-1wf1 5315  1-1-ontowf1o 5317  cfv 5318  Vtxcvtx 15821  iEdgciedg 15822  Edgcedg 15866  UHGraphcuhgr 15875  USHGraphcushgr 15876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-sub 8327  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-dec 9587  df-ndx 13043  df-slot 13044  df-base 13046  df-edgf 15814  df-vtx 15823  df-iedg 15824  df-edg 15867  df-uhgrm 15877  df-ushgrm 15878
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator