| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gt0ap0ii | GIF version | ||
| Description: Positive implies apart from zero. (Contributed by Jim Kingdon, 27-Feb-2020.) |
| Ref | Expression |
|---|---|
| gt0ap0i.1 | ⊢ 𝐴 ∈ ℝ |
| gt0ap0i.2 | ⊢ 0 < 𝐴 |
| Ref | Expression |
|---|---|
| gt0ap0ii | ⊢ 𝐴 # 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gt0ap0i.2 | . 2 ⊢ 0 < 𝐴 | |
| 2 | gt0ap0i.1 | . . 3 ⊢ 𝐴 ∈ ℝ | |
| 3 | 2 | gt0ap0i 8673 | . 2 ⊢ (0 < 𝐴 → 𝐴 # 0) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝐴 # 0 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 class class class wbr 4034 ℝcr 7897 0cc0 7898 < clt 8080 # cap 8627 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-mulrcl 7997 ax-addcom 7998 ax-mulcom 7999 ax-addass 8000 ax-mulass 8001 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-1rid 8005 ax-0id 8006 ax-rnegex 8007 ax-precex 8008 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-lttrn 8012 ax-pre-apti 8013 ax-pre-ltadd 8014 ax-pre-mulgt0 8015 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8082 df-mnf 8083 df-ltxr 8085 df-sub 8218 df-neg 8219 df-reap 8621 df-ap 8628 |
| This theorem is referenced by: eqneg 8778 nnap0i 9040 2ap0 9102 3ap0 9105 4ap0 9108 8th4div3 9229 halfpm6th 9230 5recm6rec 9619 resqrexlemover 11194 0.999... 11705 efi4p 11901 resin4p 11902 recos4p 11903 ef01bndlem 11940 cos2bnd 11944 sincos2sgn 11950 eap0 11968 sinhalfpilem 15135 sincos4thpi 15184 tan4thpi 15185 sincos6thpi 15186 2lgsoddprmlem1 15454 2lgsoddprmlem2 15455 2lgsoddprmlem3a 15456 2lgsoddprmlem3b 15457 2lgsoddprmlem3c 15458 2lgsoddprmlem3d 15459 |
| Copyright terms: Public domain | W3C validator |