![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > gt0ap0ii | GIF version |
Description: Positive implies apart from zero. (Contributed by Jim Kingdon, 27-Feb-2020.) |
Ref | Expression |
---|---|
gt0ap0i.1 | ⊢ 𝐴 ∈ ℝ |
gt0ap0i.2 | ⊢ 0 < 𝐴 |
Ref | Expression |
---|---|
gt0ap0ii | ⊢ 𝐴 # 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gt0ap0i.2 | . 2 ⊢ 0 < 𝐴 | |
2 | gt0ap0i.1 | . . 3 ⊢ 𝐴 ∈ ℝ | |
3 | 2 | gt0ap0i 8646 | . 2 ⊢ (0 < 𝐴 → 𝐴 # 0) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝐴 # 0 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 class class class wbr 4029 ℝcr 7871 0cc0 7872 < clt 8054 # cap 8600 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-ltxr 8059 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 |
This theorem is referenced by: eqneg 8751 nnap0i 9013 2ap0 9075 3ap0 9078 4ap0 9081 8th4div3 9201 halfpm6th 9202 5recm6rec 9591 resqrexlemover 11154 0.999... 11664 efi4p 11860 resin4p 11861 recos4p 11862 ef01bndlem 11899 cos2bnd 11903 sincos2sgn 11909 eap0 11927 sinhalfpilem 14926 sincos4thpi 14975 tan4thpi 14976 sincos6thpi 14977 2lgsoddprmlem1 15193 2lgsoddprmlem2 15194 2lgsoddprmlem3a 15195 2lgsoddprmlem3b 15196 2lgsoddprmlem3c 15197 2lgsoddprmlem3d 15198 |
Copyright terms: Public domain | W3C validator |