ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gt0ap0ii GIF version

Theorem gt0ap0ii 8520
Description: Positive implies apart from zero. (Contributed by Jim Kingdon, 27-Feb-2020.)
Hypotheses
Ref Expression
gt0ap0i.1 𝐴 ∈ ℝ
gt0ap0i.2 0 < 𝐴
Assertion
Ref Expression
gt0ap0ii 𝐴 # 0

Proof of Theorem gt0ap0ii
StepHypRef Expression
1 gt0ap0i.2 . 2 0 < 𝐴
2 gt0ap0i.1 . . 3 𝐴 ∈ ℝ
32gt0ap0i 8519 . 2 (0 < 𝐴𝐴 # 0)
41, 3ax-mp 5 1 𝐴 # 0
Colors of variables: wff set class
Syntax hints:  wcel 2135   class class class wbr 3979  cr 7746  0cc0 7747   < clt 7927   # cap 8473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4097  ax-pow 4150  ax-pr 4184  ax-un 4408  ax-setind 4511  ax-cnex 7838  ax-resscn 7839  ax-1cn 7840  ax-1re 7841  ax-icn 7842  ax-addcl 7843  ax-addrcl 7844  ax-mulcl 7845  ax-mulrcl 7846  ax-addcom 7847  ax-mulcom 7848  ax-addass 7849  ax-mulass 7850  ax-distr 7851  ax-i2m1 7852  ax-0lt1 7853  ax-1rid 7854  ax-0id 7855  ax-rnegex 7856  ax-precex 7857  ax-cnre 7858  ax-pre-ltirr 7859  ax-pre-lttrn 7861  ax-pre-apti 7862  ax-pre-ltadd 7863  ax-pre-mulgt0 7864
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2726  df-sbc 2950  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pw 3558  df-sn 3579  df-pr 3580  df-op 3582  df-uni 3787  df-br 3980  df-opab 4041  df-id 4268  df-xp 4607  df-rel 4608  df-cnv 4609  df-co 4610  df-dm 4611  df-iota 5150  df-fun 5187  df-fv 5193  df-riota 5795  df-ov 5842  df-oprab 5843  df-mpo 5844  df-pnf 7929  df-mnf 7930  df-ltxr 7932  df-sub 8065  df-neg 8066  df-reap 8467  df-ap 8474
This theorem is referenced by:  eqneg  8622  nnap0i  8882  2ap0  8944  3ap0  8947  4ap0  8950  8th4div3  9070  halfpm6th  9071  5recm6rec  9459  resqrexlemover  10946  0.999...  11456  efi4p  11652  resin4p  11653  recos4p  11654  ef01bndlem  11691  cos2bnd  11695  sincos2sgn  11700  eap0  11718  sinhalfpilem  13310  sincos4thpi  13359  tan4thpi  13360  sincos6thpi  13361
  Copyright terms: Public domain W3C validator