ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gt0ap0ii GIF version

Theorem gt0ap0ii 8588
Description: Positive implies apart from zero. (Contributed by Jim Kingdon, 27-Feb-2020.)
Hypotheses
Ref Expression
gt0ap0i.1 𝐴 ∈ ℝ
gt0ap0i.2 0 < 𝐴
Assertion
Ref Expression
gt0ap0ii 𝐴 # 0

Proof of Theorem gt0ap0ii
StepHypRef Expression
1 gt0ap0i.2 . 2 0 < 𝐴
2 gt0ap0i.1 . . 3 𝐴 ∈ ℝ
32gt0ap0i 8587 . 2 (0 < 𝐴𝐴 # 0)
41, 3ax-mp 5 1 𝐴 # 0
Colors of variables: wff set class
Syntax hints:  wcel 2148   class class class wbr 4005  cr 7813  0cc0 7814   < clt 7995   # cap 8541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-mulrcl 7913  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-precex 7924  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930  ax-pre-mulgt0 7931
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-pnf 7997  df-mnf 7998  df-ltxr 8000  df-sub 8133  df-neg 8134  df-reap 8535  df-ap 8542
This theorem is referenced by:  eqneg  8692  nnap0i  8953  2ap0  9015  3ap0  9018  4ap0  9021  8th4div3  9141  halfpm6th  9142  5recm6rec  9530  resqrexlemover  11022  0.999...  11532  efi4p  11728  resin4p  11729  recos4p  11730  ef01bndlem  11767  cos2bnd  11771  sincos2sgn  11776  eap0  11794  sinhalfpilem  14352  sincos4thpi  14401  tan4thpi  14402  sincos6thpi  14403  2lgsoddprmlem1  14593  2lgsoddprmlem2  14594  2lgsoddprmlem3a  14595  2lgsoddprmlem3b  14596  2lgsoddprmlem3c  14597  2lgsoddprmlem3d  14598
  Copyright terms: Public domain W3C validator