ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df2idl2rng GIF version

Theorem df2idl2rng 14437
Description: Alternate (the usual textbook) definition of a two-sided ideal of a non-unital ring to be a subgroup of the additive group of the ring which is closed under left- and right-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.)
Hypotheses
Ref Expression
df2idl2rng.u 𝑈 = (2Ideal‘𝑅)
df2idl2rng.b 𝐵 = (Base‘𝑅)
df2idl2rng.t · = (.r𝑅)
Assertion
Ref Expression
df2idl2rng ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼𝑈 ↔ ∀𝑥𝐵𝑦𝐼 ((𝑥 · 𝑦) ∈ 𝐼 ∧ (𝑦 · 𝑥) ∈ 𝐼)))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐼,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   · (𝑥,𝑦)   𝑈(𝑥,𝑦)

Proof of Theorem df2idl2rng
StepHypRef Expression
1 eqid 2209 . . . 4 (LIdeal‘𝑅) = (LIdeal‘𝑅)
2 df2idl2rng.b . . . 4 𝐵 = (Base‘𝑅)
3 df2idl2rng.t . . . 4 · = (.r𝑅)
41, 2, 3dflidl2rng 14410 . . 3 ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼 ∈ (LIdeal‘𝑅) ↔ ∀𝑥𝐵𝑦𝐼 (𝑥 · 𝑦) ∈ 𝐼))
5 eqid 2209 . . . 4 (LIdeal‘(oppr𝑅)) = (LIdeal‘(oppr𝑅))
65, 2, 3isridlrng 14411 . . 3 ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼 ∈ (LIdeal‘(oppr𝑅)) ↔ ∀𝑥𝐵𝑦𝐼 (𝑦 · 𝑥) ∈ 𝐼))
74, 6anbi12d 473 . 2 ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → ((𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ∈ (LIdeal‘(oppr𝑅))) ↔ (∀𝑥𝐵𝑦𝐼 (𝑥 · 𝑦) ∈ 𝐼 ∧ ∀𝑥𝐵𝑦𝐼 (𝑦 · 𝑥) ∈ 𝐼)))
8 eqid 2209 . . 3 (oppr𝑅) = (oppr𝑅)
9 df2idl2rng.u . . 3 𝑈 = (2Ideal‘𝑅)
101, 8, 5, 92idlelb 14434 . 2 (𝐼𝑈 ↔ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ∈ (LIdeal‘(oppr𝑅))))
11 r19.26-2 2640 . 2 (∀𝑥𝐵𝑦𝐼 ((𝑥 · 𝑦) ∈ 𝐼 ∧ (𝑦 · 𝑥) ∈ 𝐼) ↔ (∀𝑥𝐵𝑦𝐼 (𝑥 · 𝑦) ∈ 𝐼 ∧ ∀𝑥𝐵𝑦𝐼 (𝑦 · 𝑥) ∈ 𝐼))
127, 10, 113bitr4g 223 1 ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼𝑈 ↔ ∀𝑥𝐵𝑦𝐼 ((𝑥 · 𝑦) ∈ 𝐼 ∧ (𝑦 · 𝑥) ∈ 𝐼)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1375  wcel 2180  wral 2488  cfv 5294  (class class class)co 5974  Basecbs 12998  .rcmulr 13077  SubGrpcsubg 13670  Rngcrng 13861  opprcoppr 13996  LIdealclidl 14396  2Idealc2idl 14428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-pre-ltirr 8079  ax-pre-lttrn 8081  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-tpos 6361  df-pnf 8151  df-mnf 8152  df-ltxr 8154  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005  df-iress 13006  df-plusg 13089  df-mulr 13090  df-sca 13092  df-vsca 13093  df-ip 13094  df-0g 13257  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-grp 13502  df-subg 13673  df-cmn 13789  df-abl 13790  df-mgp 13850  df-rng 13862  df-oppr 13997  df-lssm 14282  df-sra 14364  df-rgmod 14365  df-lidl 14398  df-2idl 14429
This theorem is referenced by:  df2idl2  14438
  Copyright terms: Public domain W3C validator