ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  div1d GIF version

Theorem div1d 8824
Description: A number divided by 1 is itself. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
div1d.1 (𝜑𝐴 ∈ ℂ)
Assertion
Ref Expression
div1d (𝜑 → (𝐴 / 1) = 𝐴)

Proof of Theorem div1d
StepHypRef Expression
1 div1d.1 . 2 (𝜑𝐴 ∈ ℂ)
2 div1 8747 . 2 (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴)
31, 2syl 14 1 (𝜑 → (𝐴 / 1) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  (class class class)co 5925  cc 7894  1c1 7897   / cdiv 8716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717
This theorem is referenced by:  zq  9717  divlt1lt  9816  divle1le  9817  nnledivrp  9858  modqfrac  10446  iexpcyc  10753  resqrexlemcalc3  11198  geo2sum2  11697  sin01gt0  11944  bits0  12130  cncongrcoprm  12299  isprm6  12340  divdenle  12390  qden1elz  12398  pczpre  12491  mul4sq  12588  znidomb  14290  rpelogb  15269  1sgm2ppw  15315  perfectlem2  15320  cvgcmp2nlemabs  15763
  Copyright terms: Public domain W3C validator