Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dividapi | GIF version |
Description: A number divided by itself is one. (Contributed by NM, 9-Feb-1995.) |
Ref | Expression |
---|---|
divclz.1 | ⊢ 𝐴 ∈ ℂ |
recclap.2 | ⊢ 𝐴 # 0 |
Ref | Expression |
---|---|
dividapi | ⊢ (𝐴 / 𝐴) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divclz.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | recclap.2 | . 2 ⊢ 𝐴 # 0 | |
3 | dividap 8607 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (𝐴 / 𝐴) = 1) | |
4 | 1, 2, 3 | mp2an 424 | 1 ⊢ (𝐴 / 𝐴) = 1 |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∈ wcel 2141 class class class wbr 3987 (class class class)co 5851 ℂcc 7761 0cc0 7763 1c1 7764 # cap 8489 / cdiv 8578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7854 ax-resscn 7855 ax-1cn 7856 ax-1re 7857 ax-icn 7858 ax-addcl 7859 ax-addrcl 7860 ax-mulcl 7861 ax-mulrcl 7862 ax-addcom 7863 ax-mulcom 7864 ax-addass 7865 ax-mulass 7866 ax-distr 7867 ax-i2m1 7868 ax-0lt1 7869 ax-1rid 7870 ax-0id 7871 ax-rnegex 7872 ax-precex 7873 ax-cnre 7874 ax-pre-ltirr 7875 ax-pre-ltwlin 7876 ax-pre-lttrn 7877 ax-pre-apti 7878 ax-pre-ltadd 7879 ax-pre-mulgt0 7880 ax-pre-mulext 7881 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-id 4276 df-po 4279 df-iso 4280 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-iota 5158 df-fun 5198 df-fv 5204 df-riota 5807 df-ov 5854 df-oprab 5855 df-mpo 5856 df-pnf 7945 df-mnf 7946 df-xr 7947 df-ltxr 7948 df-le 7949 df-sub 8081 df-neg 8082 df-reap 8483 df-ap 8490 df-div 8579 |
This theorem is referenced by: 2div2e1 8999 halfpm6th 9087 fldiv4p1lem1div2 10250 0.999... 11473 geoihalfsum 11474 efival 11684 ef01bndlem 11708 cos1bnd 11711 cos2bnd 11712 cos01gt0 11714 sincos4thpi 13516 tan4thpi 13517 sincos6thpi 13518 |
Copyright terms: Public domain | W3C validator |