ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lidlsubcl GIF version

Theorem lidlsubcl 13820
Description: An ideal is closed under subtraction. (Contributed by Stefan O'Rear, 28-Mar-2015.) (Proof shortened by OpenAI, 25-Mar-2020.)
Hypotheses
Ref Expression
lidlcl.u 𝑈 = (LIdeal‘𝑅)
lidlsubcl.m = (-g𝑅)
Assertion
Ref Expression
lidlsubcl (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ (𝑋𝐼𝑌𝐼)) → (𝑋 𝑌) ∈ 𝐼)

Proof of Theorem lidlsubcl
StepHypRef Expression
1 lidlcl.u . . . . 5 𝑈 = (LIdeal‘𝑅)
21lidlsubg 13819 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → 𝐼 ∈ (SubGrp‘𝑅))
323adant3 1019 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈 ∧ (𝑋𝐼𝑌𝐼)) → 𝐼 ∈ (SubGrp‘𝑅))
4 simp3l 1027 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈 ∧ (𝑋𝐼𝑌𝐼)) → 𝑋𝐼)
5 simp3r 1028 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈 ∧ (𝑋𝐼𝑌𝐼)) → 𝑌𝐼)
6 lidlsubcl.m . . . 4 = (-g𝑅)
76subgsubcl 13141 . . 3 ((𝐼 ∈ (SubGrp‘𝑅) ∧ 𝑋𝐼𝑌𝐼) → (𝑋 𝑌) ∈ 𝐼)
83, 4, 5, 7syl3anc 1249 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈 ∧ (𝑋𝐼𝑌𝐼)) → (𝑋 𝑌) ∈ 𝐼)
983expa 1205 1 (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ (𝑋𝐼𝑌𝐼)) → (𝑋 𝑌) ∈ 𝐼)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2160  cfv 5235  (class class class)co 5897  -gcsg 12962  SubGrpcsubg 13123  Ringcrg 13367  LIdealclidl 13800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-addcom 7942  ax-addass 7944  ax-i2m1 7947  ax-0lt1 7948  ax-0id 7950  ax-rnegex 7951  ax-pre-ltirr 7954  ax-pre-lttrn 7956  ax-pre-ltadd 7958
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-pnf 8025  df-mnf 8026  df-ltxr 8028  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-5 9012  df-6 9013  df-7 9014  df-8 9015  df-ndx 12518  df-slot 12519  df-base 12521  df-sets 12522  df-iress 12523  df-plusg 12605  df-mulr 12606  df-sca 12608  df-vsca 12609  df-ip 12610  df-0g 12766  df-mgm 12835  df-sgrp 12880  df-mnd 12893  df-grp 12963  df-minusg 12964  df-sbg 12965  df-subg 13126  df-mgp 13292  df-ur 13331  df-ring 13369  df-subrg 13583  df-lmod 13622  df-lssm 13686  df-sra 13768  df-rgmod 13769  df-lidl 13802
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator