| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lgsquadlemsfi | GIF version | ||
| Description: Lemma for lgsquad 15744. 𝑆 is finite. (Contributed by Jim Kingdon, 16-Sep-2025.) |
| Ref | Expression |
|---|---|
| lgseisen.1 | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) |
| lgseisen.2 | ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) |
| lgseisen.3 | ⊢ (𝜑 → 𝑃 ≠ 𝑄) |
| lgsquad.4 | ⊢ 𝑀 = ((𝑃 − 1) / 2) |
| lgsquad.5 | ⊢ 𝑁 = ((𝑄 − 1) / 2) |
| lgsquad.6 | ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} |
| Ref | Expression |
|---|---|
| lgsquadlemsfi | ⊢ (𝜑 → 𝑆 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lgsquad.6 | . 2 ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} | |
| 2 | 1zzd 9461 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 3 | lgseisen.1 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
| 4 | lgsquad.4 | . . . . 5 ⊢ 𝑀 = ((𝑃 − 1) / 2) | |
| 5 | 3, 4 | gausslemma2dlem0b 15714 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 6 | 5 | nnzd 9556 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 7 | 2, 6 | fzfigd 10640 | . 2 ⊢ (𝜑 → (1...𝑀) ∈ Fin) |
| 8 | lgseisen.2 | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) | |
| 9 | lgsquad.5 | . . . . 5 ⊢ 𝑁 = ((𝑄 − 1) / 2) | |
| 10 | 8, 9 | gausslemma2dlem0b 15714 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 11 | 10 | nnzd 9556 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 12 | 2, 11 | fzfigd 10640 | . 2 ⊢ (𝜑 → (1...𝑁) ∈ Fin) |
| 13 | elfznn 10238 | . . . . . . 7 ⊢ (𝑦 ∈ (1...𝑁) → 𝑦 ∈ ℕ) | |
| 14 | 13 | ad2antll 491 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑦 ∈ ℕ) |
| 15 | 3 | gausslemma2dlem0a 15713 | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ ℕ) |
| 16 | 15 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑃 ∈ ℕ) |
| 17 | 14, 16 | nnmulcld 9147 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑦 · 𝑃) ∈ ℕ) |
| 18 | 17 | nnzd 9556 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑦 · 𝑃) ∈ ℤ) |
| 19 | elfznn 10238 | . . . . . . 7 ⊢ (𝑥 ∈ (1...𝑀) → 𝑥 ∈ ℕ) | |
| 20 | 19 | ad2antrl 490 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑥 ∈ ℕ) |
| 21 | 8 | gausslemma2dlem0a 15713 | . . . . . . 7 ⊢ (𝜑 → 𝑄 ∈ ℕ) |
| 22 | 21 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑄 ∈ ℕ) |
| 23 | 20, 22 | nnmulcld 9147 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑥 · 𝑄) ∈ ℕ) |
| 24 | 23 | nnzd 9556 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑥 · 𝑄) ∈ ℤ) |
| 25 | zdclt 9512 | . . . 4 ⊢ (((𝑦 · 𝑃) ∈ ℤ ∧ (𝑥 · 𝑄) ∈ ℤ) → DECID (𝑦 · 𝑃) < (𝑥 · 𝑄)) | |
| 26 | 18, 24, 25 | syl2anc 411 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → DECID (𝑦 · 𝑃) < (𝑥 · 𝑄)) |
| 27 | 26 | ralrimivva 2612 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (1...𝑀)∀𝑦 ∈ (1...𝑁)DECID (𝑦 · 𝑃) < (𝑥 · 𝑄)) |
| 28 | 1, 7, 12, 27 | opabfi 7088 | 1 ⊢ (𝜑 → 𝑆 ∈ Fin) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 DECID wdc 839 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 ∖ cdif 3194 {csn 3666 class class class wbr 4082 {copab 4143 (class class class)co 5994 Fincfn 6877 1c1 7988 · cmul 7992 < clt 8169 − cmin 8305 / cdiv 8807 ℕcn 9098 2c2 9149 ℤcz 9434 ...cfz 10192 ℙcprime 12615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 ax-arch 8106 ax-caucvg 8107 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-xor 1418 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-frec 6527 df-1o 6552 df-2o 6553 df-er 6670 df-en 6878 df-fin 6880 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-n0 9358 df-z 9435 df-uz 9711 df-q 9803 df-rp 9838 df-fz 10193 df-seqfrec 10657 df-exp 10748 df-cj 11339 df-re 11340 df-im 11341 df-rsqrt 11495 df-abs 11496 df-dvds 12285 df-prm 12616 |
| This theorem is referenced by: lgsquadlemofi 15740 lgsquadlem1 15741 lgsquadlem2 15742 lgsquadlem3 15743 |
| Copyright terms: Public domain | W3C validator |