ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsquadlemsfi GIF version

Theorem lgsquadlemsfi 15283
Description: Lemma for lgsquad 15288. 𝑆 is finite. (Contributed by Jim Kingdon, 16-Sep-2025.)
Hypotheses
Ref Expression
lgseisen.1 (𝜑𝑃 ∈ (ℙ ∖ {2}))
lgseisen.2 (𝜑𝑄 ∈ (ℙ ∖ {2}))
lgseisen.3 (𝜑𝑃𝑄)
lgsquad.4 𝑀 = ((𝑃 − 1) / 2)
lgsquad.5 𝑁 = ((𝑄 − 1) / 2)
lgsquad.6 𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))}
Assertion
Ref Expression
lgsquadlemsfi (𝜑𝑆 ∈ Fin)
Distinct variable groups:   𝑥,𝑦,𝑃   𝜑,𝑥,𝑦   𝑦,𝑀   𝑥,𝑁,𝑦   𝑥,𝑄,𝑦   𝑥,𝑆   𝑥,𝑀   𝑦,𝑆

Proof of Theorem lgsquadlemsfi
StepHypRef Expression
1 lgsquad.6 . 2 𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))}
2 1zzd 9350 . . 3 (𝜑 → 1 ∈ ℤ)
3 lgseisen.1 . . . . 5 (𝜑𝑃 ∈ (ℙ ∖ {2}))
4 lgsquad.4 . . . . 5 𝑀 = ((𝑃 − 1) / 2)
53, 4gausslemma2dlem0b 15258 . . . 4 (𝜑𝑀 ∈ ℕ)
65nnzd 9444 . . 3 (𝜑𝑀 ∈ ℤ)
72, 6fzfigd 10508 . 2 (𝜑 → (1...𝑀) ∈ Fin)
8 lgseisen.2 . . . . 5 (𝜑𝑄 ∈ (ℙ ∖ {2}))
9 lgsquad.5 . . . . 5 𝑁 = ((𝑄 − 1) / 2)
108, 9gausslemma2dlem0b 15258 . . . 4 (𝜑𝑁 ∈ ℕ)
1110nnzd 9444 . . 3 (𝜑𝑁 ∈ ℤ)
122, 11fzfigd 10508 . 2 (𝜑 → (1...𝑁) ∈ Fin)
13 elfznn 10126 . . . . . . 7 (𝑦 ∈ (1...𝑁) → 𝑦 ∈ ℕ)
1413ad2antll 491 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑦 ∈ ℕ)
153gausslemma2dlem0a 15257 . . . . . . 7 (𝜑𝑃 ∈ ℕ)
1615adantr 276 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑃 ∈ ℕ)
1714, 16nnmulcld 9036 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑦 · 𝑃) ∈ ℕ)
1817nnzd 9444 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑦 · 𝑃) ∈ ℤ)
19 elfznn 10126 . . . . . . 7 (𝑥 ∈ (1...𝑀) → 𝑥 ∈ ℕ)
2019ad2antrl 490 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑥 ∈ ℕ)
218gausslemma2dlem0a 15257 . . . . . . 7 (𝜑𝑄 ∈ ℕ)
2221adantr 276 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑄 ∈ ℕ)
2320, 22nnmulcld 9036 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑥 · 𝑄) ∈ ℕ)
2423nnzd 9444 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑥 · 𝑄) ∈ ℤ)
25 zdclt 9400 . . . 4 (((𝑦 · 𝑃) ∈ ℤ ∧ (𝑥 · 𝑄) ∈ ℤ) → DECID (𝑦 · 𝑃) < (𝑥 · 𝑄))
2618, 24, 25syl2anc 411 . . 3 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → DECID (𝑦 · 𝑃) < (𝑥 · 𝑄))
2726ralrimivva 2579 . 2 (𝜑 → ∀𝑥 ∈ (1...𝑀)∀𝑦 ∈ (1...𝑁)DECID (𝑦 · 𝑃) < (𝑥 · 𝑄))
281, 7, 12, 27opabfi 6997 1 (𝜑𝑆 ∈ Fin)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 835   = wceq 1364  wcel 2167  wne 2367  cdif 3154  {csn 3622   class class class wbr 4033  {copab 4093  (class class class)co 5922  Fincfn 6799  1c1 7878   · cmul 7882   < clt 8059  cmin 8195   / cdiv 8696  cn 8987  2c2 9038  cz 9323  ...cfz 10080  cprime 12251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7968  ax-resscn 7969  ax-1cn 7970  ax-1re 7971  ax-icn 7972  ax-addcl 7973  ax-addrcl 7974  ax-mulcl 7975  ax-mulrcl 7976  ax-addcom 7977  ax-mulcom 7978  ax-addass 7979  ax-mulass 7980  ax-distr 7981  ax-i2m1 7982  ax-0lt1 7983  ax-1rid 7984  ax-0id 7985  ax-rnegex 7986  ax-precex 7987  ax-cnre 7988  ax-pre-ltirr 7989  ax-pre-ltwlin 7990  ax-pre-lttrn 7991  ax-pre-apti 7992  ax-pre-ltadd 7993  ax-pre-mulgt0 7994  ax-pre-mulext 7995  ax-arch 7996  ax-caucvg 7997
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-1o 6474  df-2o 6475  df-er 6592  df-en 6800  df-fin 6802  df-pnf 8061  df-mnf 8062  df-xr 8063  df-ltxr 8064  df-le 8065  df-sub 8197  df-neg 8198  df-reap 8599  df-ap 8606  df-div 8697  df-inn 8988  df-2 9046  df-3 9047  df-4 9048  df-n0 9247  df-z 9324  df-uz 9599  df-q 9691  df-rp 9726  df-fz 10081  df-seqfrec 10525  df-exp 10616  df-cj 10992  df-re 10993  df-im 10994  df-rsqrt 11148  df-abs 11149  df-dvds 11937  df-prm 12252
This theorem is referenced by:  lgsquadlemofi  15284  lgsquadlem1  15285  lgsquadlem2  15286  lgsquadlem3  15287
  Copyright terms: Public domain W3C validator