| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uhgrm | GIF version | ||
| Description: An edge is an inhabited subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 15-Dec-2020.) |
| Ref | Expression |
|---|---|
| uhgrfun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| uhgrm | ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → ∃𝑗 𝑗 ∈ (𝐸‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 | . . . . . . . 8 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | uhgrfun.e | . . . . . . . 8 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 3 | 1, 2 | uhgrfm 15881 | . . . . . . 7 ⊢ (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑗 𝑗 ∈ 𝑠}) |
| 4 | fndm 5420 | . . . . . . . 8 ⊢ (𝐸 Fn 𝐴 → dom 𝐸 = 𝐴) | |
| 5 | 4 | feq2d 5461 | . . . . . . 7 ⊢ (𝐸 Fn 𝐴 → (𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑗 𝑗 ∈ 𝑠} ↔ 𝐸:𝐴⟶{𝑠 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑗 𝑗 ∈ 𝑠})) |
| 6 | 3, 5 | syl5ibcom 155 | . . . . . 6 ⊢ (𝐺 ∈ UHGraph → (𝐸 Fn 𝐴 → 𝐸:𝐴⟶{𝑠 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑗 𝑗 ∈ 𝑠})) |
| 7 | 6 | imp 124 | . . . . 5 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴) → 𝐸:𝐴⟶{𝑠 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑗 𝑗 ∈ 𝑠}) |
| 8 | 7 | ffvelcdmda 5772 | . . . 4 ⊢ (((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴) ∧ 𝐹 ∈ 𝐴) → (𝐸‘𝐹) ∈ {𝑠 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑗 𝑗 ∈ 𝑠}) |
| 9 | 8 | 3impa 1218 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (𝐸‘𝐹) ∈ {𝑠 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑗 𝑗 ∈ 𝑠}) |
| 10 | eleq2 2293 | . . . . 5 ⊢ (𝑠 = (𝐸‘𝐹) → (𝑗 ∈ 𝑠 ↔ 𝑗 ∈ (𝐸‘𝐹))) | |
| 11 | 10 | exbidv 1871 | . . . 4 ⊢ (𝑠 = (𝐸‘𝐹) → (∃𝑗 𝑗 ∈ 𝑠 ↔ ∃𝑗 𝑗 ∈ (𝐸‘𝐹))) |
| 12 | 11 | elrab 2959 | . . 3 ⊢ ((𝐸‘𝐹) ∈ {𝑠 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑗 𝑗 ∈ 𝑠} ↔ ((𝐸‘𝐹) ∈ 𝒫 (Vtx‘𝐺) ∧ ∃𝑗 𝑗 ∈ (𝐸‘𝐹))) |
| 13 | 9, 12 | sylib 122 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → ((𝐸‘𝐹) ∈ 𝒫 (Vtx‘𝐺) ∧ ∃𝑗 𝑗 ∈ (𝐸‘𝐹))) |
| 14 | 13 | simprd 114 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → ∃𝑗 𝑗 ∈ (𝐸‘𝐹)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 = wceq 1395 ∃wex 1538 ∈ wcel 2200 {crab 2512 𝒫 cpw 3649 dom cdm 4719 Fn wfn 5313 ⟶wf 5314 ‘cfv 5318 Vtxcvtx 15821 iEdgciedg 15822 UHGraphcuhgr 15875 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fo 5324 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-sub 8327 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-dec 9587 df-ndx 13043 df-slot 13044 df-base 13046 df-edgf 15814 df-vtx 15823 df-iedg 15824 df-uhgrm 15877 |
| This theorem is referenced by: lpvtx 15887 |
| Copyright terms: Public domain | W3C validator |