ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uhgrm GIF version

Theorem uhgrm 15843
Description: An edge is an inhabited subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 15-Dec-2020.)
Hypothesis
Ref Expression
uhgrfun.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
uhgrm ((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → ∃𝑗 𝑗 ∈ (𝐸𝐹))
Distinct variable groups:   𝑗,𝐸   𝑗,𝐹
Allowed substitution hints:   𝐴(𝑗)   𝐺(𝑗)

Proof of Theorem uhgrm
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 eqid 2209 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
2 uhgrfun.e . . . . . . . 8 𝐸 = (iEdg‘𝐺)
31, 2uhgrfm 15838 . . . . . . 7 (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑗 𝑗𝑠})
4 fndm 5396 . . . . . . . 8 (𝐸 Fn 𝐴 → dom 𝐸 = 𝐴)
54feq2d 5437 . . . . . . 7 (𝐸 Fn 𝐴 → (𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑗 𝑗𝑠} ↔ 𝐸:𝐴⟶{𝑠 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑗 𝑗𝑠}))
63, 5syl5ibcom 155 . . . . . 6 (𝐺 ∈ UHGraph → (𝐸 Fn 𝐴𝐸:𝐴⟶{𝑠 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑗 𝑗𝑠}))
76imp 124 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴) → 𝐸:𝐴⟶{𝑠 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑗 𝑗𝑠})
87ffvelcdmda 5743 . . . 4 (((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴) ∧ 𝐹𝐴) → (𝐸𝐹) ∈ {𝑠 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑗 𝑗𝑠})
983impa 1199 . . 3 ((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (𝐸𝐹) ∈ {𝑠 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑗 𝑗𝑠})
10 eleq2 2273 . . . . 5 (𝑠 = (𝐸𝐹) → (𝑗𝑠𝑗 ∈ (𝐸𝐹)))
1110exbidv 1851 . . . 4 (𝑠 = (𝐸𝐹) → (∃𝑗 𝑗𝑠 ↔ ∃𝑗 𝑗 ∈ (𝐸𝐹)))
1211elrab 2939 . . 3 ((𝐸𝐹) ∈ {𝑠 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑗 𝑗𝑠} ↔ ((𝐸𝐹) ∈ 𝒫 (Vtx‘𝐺) ∧ ∃𝑗 𝑗 ∈ (𝐸𝐹)))
139, 12sylib 122 . 2 ((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → ((𝐸𝐹) ∈ 𝒫 (Vtx‘𝐺) ∧ ∃𝑗 𝑗 ∈ (𝐸𝐹)))
1413simprd 114 1 ((𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → ∃𝑗 𝑗 ∈ (𝐸𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 983   = wceq 1375  wex 1518  wcel 2180  {crab 2492  𝒫 cpw 3629  dom cdm 4696   Fn wfn 5289  wf 5290  cfv 5294  Vtxcvtx 15778  iEdgciedg 15779  UHGraphcuhgr 15832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-fo 5300  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-sub 8287  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-dec 9547  df-ndx 13001  df-slot 13002  df-base 13004  df-edgf 15771  df-vtx 15780  df-iedg 15781  df-uhgrm 15834
This theorem is referenced by:  lpvtx  15844
  Copyright terms: Public domain W3C validator