| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvrcan1 | GIF version | ||
| Description: A cancellation law for division. (divcanap1 8774 analog.) (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| dvrass.b | ⊢ 𝐵 = (Base‘𝑅) |
| dvrass.o | ⊢ 𝑈 = (Unit‘𝑅) |
| dvrass.d | ⊢ / = (/r‘𝑅) |
| dvrass.t | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| dvrcan1 | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 / 𝑌) · 𝑌) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvrass.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | 1 | a1i 9 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → 𝐵 = (Base‘𝑅)) |
| 3 | dvrass.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 4 | 3 | a1i 9 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → · = (.r‘𝑅)) |
| 5 | dvrass.o | . . . . 5 ⊢ 𝑈 = (Unit‘𝑅) | |
| 6 | 5 | a1i 9 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → 𝑈 = (Unit‘𝑅)) |
| 7 | eqid 2206 | . . . . 5 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
| 8 | 7 | a1i 9 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (invr‘𝑅) = (invr‘𝑅)) |
| 9 | dvrass.d | . . . . 5 ⊢ / = (/r‘𝑅) | |
| 10 | 9 | a1i 9 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → / = (/r‘𝑅)) |
| 11 | simp1 1000 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → 𝑅 ∈ Ring) | |
| 12 | simp2 1001 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → 𝑋 ∈ 𝐵) | |
| 13 | simp3 1002 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → 𝑌 ∈ 𝑈) | |
| 14 | 2, 4, 6, 8, 10, 11, 12, 13 | dvrvald 13971 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) = (𝑋 · ((invr‘𝑅)‘𝑌))) |
| 15 | 14 | oveq1d 5972 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 / 𝑌) · 𝑌) = ((𝑋 · ((invr‘𝑅)‘𝑌)) · 𝑌)) |
| 16 | 5, 7, 1 | ringinvcl 13962 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈) → ((invr‘𝑅)‘𝑌) ∈ 𝐵) |
| 17 | 16 | 3adant2 1019 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((invr‘𝑅)‘𝑌) ∈ 𝐵) |
| 18 | ringsrg 13884 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) | |
| 19 | 11, 18 | syl 14 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → 𝑅 ∈ SRing) |
| 20 | 2, 6, 19, 13 | unitcld 13945 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → 𝑌 ∈ 𝐵) |
| 21 | 1, 3 | ringass 13853 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ ((invr‘𝑅)‘𝑌) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 · ((invr‘𝑅)‘𝑌)) · 𝑌) = (𝑋 · (((invr‘𝑅)‘𝑌) · 𝑌))) |
| 22 | 11, 12, 17, 20, 21 | syl13anc 1252 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 · ((invr‘𝑅)‘𝑌)) · 𝑌) = (𝑋 · (((invr‘𝑅)‘𝑌) · 𝑌))) |
| 23 | eqid 2206 | . . . . . 6 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 24 | 5, 7, 3, 23 | unitlinv 13963 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈) → (((invr‘𝑅)‘𝑌) · 𝑌) = (1r‘𝑅)) |
| 25 | 24 | 3adant2 1019 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (((invr‘𝑅)‘𝑌) · 𝑌) = (1r‘𝑅)) |
| 26 | 25 | oveq2d 5973 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 · (((invr‘𝑅)‘𝑌) · 𝑌)) = (𝑋 · (1r‘𝑅))) |
| 27 | 1, 3, 23 | ringridm 13861 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · (1r‘𝑅)) = 𝑋) |
| 28 | 27 | 3adant3 1020 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 · (1r‘𝑅)) = 𝑋) |
| 29 | 26, 28 | eqtrd 2239 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 · (((invr‘𝑅)‘𝑌) · 𝑌)) = 𝑋) |
| 30 | 15, 22, 29 | 3eqtrd 2243 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 / 𝑌) · 𝑌) = 𝑋) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ‘cfv 5280 (class class class)co 5957 Basecbs 12907 .rcmulr 12985 1rcur 13796 SRingcsrg 13800 Ringcrg 13833 Unitcui 13924 invrcinvr 13957 /rcdvr 13968 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-pre-ltirr 8057 ax-pre-lttrn 8059 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-tpos 6344 df-pnf 8129 df-mnf 8130 df-ltxr 8132 df-inn 9057 df-2 9115 df-3 9116 df-ndx 12910 df-slot 12911 df-base 12913 df-sets 12914 df-iress 12915 df-plusg 12997 df-mulr 12998 df-0g 13165 df-mgm 13263 df-sgrp 13309 df-mnd 13324 df-grp 13410 df-minusg 13411 df-cmn 13697 df-abl 13698 df-mgp 13758 df-ur 13797 df-srg 13801 df-ring 13835 df-oppr 13905 df-dvdsr 13926 df-unit 13927 df-invr 13958 df-dvr 13969 |
| This theorem is referenced by: dvreq1 13979 lringuplu 14033 |
| Copyright terms: Public domain | W3C validator |