ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvrcan1 GIF version

Theorem dvrcan1 13844
Description: A cancellation law for division. (divcanap1 8753 analog.) (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
dvrass.b 𝐵 = (Base‘𝑅)
dvrass.o 𝑈 = (Unit‘𝑅)
dvrass.d / = (/r𝑅)
dvrass.t · = (.r𝑅)
Assertion
Ref Expression
dvrcan1 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → ((𝑋 / 𝑌) · 𝑌) = 𝑋)

Proof of Theorem dvrcan1
StepHypRef Expression
1 dvrass.b . . . . 5 𝐵 = (Base‘𝑅)
21a1i 9 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → 𝐵 = (Base‘𝑅))
3 dvrass.t . . . . 5 · = (.r𝑅)
43a1i 9 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → · = (.r𝑅))
5 dvrass.o . . . . 5 𝑈 = (Unit‘𝑅)
65a1i 9 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → 𝑈 = (Unit‘𝑅))
7 eqid 2204 . . . . 5 (invr𝑅) = (invr𝑅)
87a1i 9 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → (invr𝑅) = (invr𝑅))
9 dvrass.d . . . . 5 / = (/r𝑅)
109a1i 9 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → / = (/r𝑅))
11 simp1 999 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → 𝑅 ∈ Ring)
12 simp2 1000 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → 𝑋𝐵)
13 simp3 1001 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → 𝑌𝑈)
142, 4, 6, 8, 10, 11, 12, 13dvrvald 13838 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → (𝑋 / 𝑌) = (𝑋 · ((invr𝑅)‘𝑌)))
1514oveq1d 5958 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → ((𝑋 / 𝑌) · 𝑌) = ((𝑋 · ((invr𝑅)‘𝑌)) · 𝑌))
165, 7, 1ringinvcl 13829 . . . 4 ((𝑅 ∈ Ring ∧ 𝑌𝑈) → ((invr𝑅)‘𝑌) ∈ 𝐵)
17163adant2 1018 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → ((invr𝑅)‘𝑌) ∈ 𝐵)
18 ringsrg 13751 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
1911, 18syl 14 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → 𝑅 ∈ SRing)
202, 6, 19, 13unitcld 13812 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → 𝑌𝐵)
211, 3ringass 13720 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵 ∧ ((invr𝑅)‘𝑌) ∈ 𝐵𝑌𝐵)) → ((𝑋 · ((invr𝑅)‘𝑌)) · 𝑌) = (𝑋 · (((invr𝑅)‘𝑌) · 𝑌)))
2211, 12, 17, 20, 21syl13anc 1251 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → ((𝑋 · ((invr𝑅)‘𝑌)) · 𝑌) = (𝑋 · (((invr𝑅)‘𝑌) · 𝑌)))
23 eqid 2204 . . . . . 6 (1r𝑅) = (1r𝑅)
245, 7, 3, 23unitlinv 13830 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌𝑈) → (((invr𝑅)‘𝑌) · 𝑌) = (1r𝑅))
25243adant2 1018 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → (((invr𝑅)‘𝑌) · 𝑌) = (1r𝑅))
2625oveq2d 5959 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → (𝑋 · (((invr𝑅)‘𝑌) · 𝑌)) = (𝑋 · (1r𝑅)))
271, 3, 23ringridm 13728 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · (1r𝑅)) = 𝑋)
28273adant3 1019 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → (𝑋 · (1r𝑅)) = 𝑋)
2926, 28eqtrd 2237 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → (𝑋 · (((invr𝑅)‘𝑌) · 𝑌)) = 𝑋)
3015, 22, 293eqtrd 2241 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → ((𝑋 / 𝑌) · 𝑌) = 𝑋)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980   = wceq 1372  wcel 2175  cfv 5270  (class class class)co 5943  Basecbs 12774  .rcmulr 12852  1rcur 13663  SRingcsrg 13667  Ringcrg 13700  Unitcui 13791  invrcinvr 13824  /rcdvr 13835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-tpos 6330  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-3 9095  df-ndx 12777  df-slot 12778  df-base 12780  df-sets 12781  df-iress 12782  df-plusg 12864  df-mulr 12865  df-0g 13032  df-mgm 13130  df-sgrp 13176  df-mnd 13191  df-grp 13277  df-minusg 13278  df-cmn 13564  df-abl 13565  df-mgp 13625  df-ur 13664  df-srg 13668  df-ring 13702  df-oppr 13772  df-dvdsr 13793  df-unit 13794  df-invr 13825  df-dvr 13836
This theorem is referenced by:  dvreq1  13846  lringuplu  13900
  Copyright terms: Public domain W3C validator