| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvrcan1 | GIF version | ||
| Description: A cancellation law for division. (divcanap1 8753 analog.) (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| dvrass.b | ⊢ 𝐵 = (Base‘𝑅) |
| dvrass.o | ⊢ 𝑈 = (Unit‘𝑅) |
| dvrass.d | ⊢ / = (/r‘𝑅) |
| dvrass.t | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| dvrcan1 | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 / 𝑌) · 𝑌) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvrass.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | 1 | a1i 9 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → 𝐵 = (Base‘𝑅)) |
| 3 | dvrass.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 4 | 3 | a1i 9 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → · = (.r‘𝑅)) |
| 5 | dvrass.o | . . . . 5 ⊢ 𝑈 = (Unit‘𝑅) | |
| 6 | 5 | a1i 9 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → 𝑈 = (Unit‘𝑅)) |
| 7 | eqid 2204 | . . . . 5 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
| 8 | 7 | a1i 9 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (invr‘𝑅) = (invr‘𝑅)) |
| 9 | dvrass.d | . . . . 5 ⊢ / = (/r‘𝑅) | |
| 10 | 9 | a1i 9 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → / = (/r‘𝑅)) |
| 11 | simp1 999 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → 𝑅 ∈ Ring) | |
| 12 | simp2 1000 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → 𝑋 ∈ 𝐵) | |
| 13 | simp3 1001 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → 𝑌 ∈ 𝑈) | |
| 14 | 2, 4, 6, 8, 10, 11, 12, 13 | dvrvald 13838 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) = (𝑋 · ((invr‘𝑅)‘𝑌))) |
| 15 | 14 | oveq1d 5958 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 / 𝑌) · 𝑌) = ((𝑋 · ((invr‘𝑅)‘𝑌)) · 𝑌)) |
| 16 | 5, 7, 1 | ringinvcl 13829 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈) → ((invr‘𝑅)‘𝑌) ∈ 𝐵) |
| 17 | 16 | 3adant2 1018 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((invr‘𝑅)‘𝑌) ∈ 𝐵) |
| 18 | ringsrg 13751 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) | |
| 19 | 11, 18 | syl 14 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → 𝑅 ∈ SRing) |
| 20 | 2, 6, 19, 13 | unitcld 13812 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → 𝑌 ∈ 𝐵) |
| 21 | 1, 3 | ringass 13720 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ ((invr‘𝑅)‘𝑌) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 · ((invr‘𝑅)‘𝑌)) · 𝑌) = (𝑋 · (((invr‘𝑅)‘𝑌) · 𝑌))) |
| 22 | 11, 12, 17, 20, 21 | syl13anc 1251 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 · ((invr‘𝑅)‘𝑌)) · 𝑌) = (𝑋 · (((invr‘𝑅)‘𝑌) · 𝑌))) |
| 23 | eqid 2204 | . . . . . 6 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 24 | 5, 7, 3, 23 | unitlinv 13830 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈) → (((invr‘𝑅)‘𝑌) · 𝑌) = (1r‘𝑅)) |
| 25 | 24 | 3adant2 1018 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (((invr‘𝑅)‘𝑌) · 𝑌) = (1r‘𝑅)) |
| 26 | 25 | oveq2d 5959 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 · (((invr‘𝑅)‘𝑌) · 𝑌)) = (𝑋 · (1r‘𝑅))) |
| 27 | 1, 3, 23 | ringridm 13728 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · (1r‘𝑅)) = 𝑋) |
| 28 | 27 | 3adant3 1019 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 · (1r‘𝑅)) = 𝑋) |
| 29 | 26, 28 | eqtrd 2237 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 · (((invr‘𝑅)‘𝑌) · 𝑌)) = 𝑋) |
| 30 | 15, 22, 29 | 3eqtrd 2241 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 / 𝑌) · 𝑌) = 𝑋) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 = wceq 1372 ∈ wcel 2175 ‘cfv 5270 (class class class)co 5943 Basecbs 12774 .rcmulr 12852 1rcur 13663 SRingcsrg 13667 Ringcrg 13700 Unitcui 13791 invrcinvr 13824 /rcdvr 13835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-pre-ltirr 8036 ax-pre-lttrn 8038 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-tpos 6330 df-pnf 8108 df-mnf 8109 df-ltxr 8111 df-inn 9036 df-2 9094 df-3 9095 df-ndx 12777 df-slot 12778 df-base 12780 df-sets 12781 df-iress 12782 df-plusg 12864 df-mulr 12865 df-0g 13032 df-mgm 13130 df-sgrp 13176 df-mnd 13191 df-grp 13277 df-minusg 13278 df-cmn 13564 df-abl 13565 df-mgp 13625 df-ur 13664 df-srg 13668 df-ring 13702 df-oppr 13772 df-dvdsr 13793 df-unit 13794 df-invr 13825 df-dvr 13836 |
| This theorem is referenced by: dvreq1 13846 lringuplu 13900 |
| Copyright terms: Public domain | W3C validator |