ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvrcan1 GIF version

Theorem dvrcan1 13696
Description: A cancellation law for division. (divcanap1 8708 analog.) (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
dvrass.b 𝐵 = (Base‘𝑅)
dvrass.o 𝑈 = (Unit‘𝑅)
dvrass.d / = (/r𝑅)
dvrass.t · = (.r𝑅)
Assertion
Ref Expression
dvrcan1 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → ((𝑋 / 𝑌) · 𝑌) = 𝑋)

Proof of Theorem dvrcan1
StepHypRef Expression
1 dvrass.b . . . . 5 𝐵 = (Base‘𝑅)
21a1i 9 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → 𝐵 = (Base‘𝑅))
3 dvrass.t . . . . 5 · = (.r𝑅)
43a1i 9 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → · = (.r𝑅))
5 dvrass.o . . . . 5 𝑈 = (Unit‘𝑅)
65a1i 9 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → 𝑈 = (Unit‘𝑅))
7 eqid 2196 . . . . 5 (invr𝑅) = (invr𝑅)
87a1i 9 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → (invr𝑅) = (invr𝑅))
9 dvrass.d . . . . 5 / = (/r𝑅)
109a1i 9 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → / = (/r𝑅))
11 simp1 999 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → 𝑅 ∈ Ring)
12 simp2 1000 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → 𝑋𝐵)
13 simp3 1001 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → 𝑌𝑈)
142, 4, 6, 8, 10, 11, 12, 13dvrvald 13690 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → (𝑋 / 𝑌) = (𝑋 · ((invr𝑅)‘𝑌)))
1514oveq1d 5937 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → ((𝑋 / 𝑌) · 𝑌) = ((𝑋 · ((invr𝑅)‘𝑌)) · 𝑌))
165, 7, 1ringinvcl 13681 . . . 4 ((𝑅 ∈ Ring ∧ 𝑌𝑈) → ((invr𝑅)‘𝑌) ∈ 𝐵)
17163adant2 1018 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → ((invr𝑅)‘𝑌) ∈ 𝐵)
18 ringsrg 13603 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
1911, 18syl 14 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → 𝑅 ∈ SRing)
202, 6, 19, 13unitcld 13664 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → 𝑌𝐵)
211, 3ringass 13572 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵 ∧ ((invr𝑅)‘𝑌) ∈ 𝐵𝑌𝐵)) → ((𝑋 · ((invr𝑅)‘𝑌)) · 𝑌) = (𝑋 · (((invr𝑅)‘𝑌) · 𝑌)))
2211, 12, 17, 20, 21syl13anc 1251 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → ((𝑋 · ((invr𝑅)‘𝑌)) · 𝑌) = (𝑋 · (((invr𝑅)‘𝑌) · 𝑌)))
23 eqid 2196 . . . . . 6 (1r𝑅) = (1r𝑅)
245, 7, 3, 23unitlinv 13682 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌𝑈) → (((invr𝑅)‘𝑌) · 𝑌) = (1r𝑅))
25243adant2 1018 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → (((invr𝑅)‘𝑌) · 𝑌) = (1r𝑅))
2625oveq2d 5938 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → (𝑋 · (((invr𝑅)‘𝑌) · 𝑌)) = (𝑋 · (1r𝑅)))
271, 3, 23ringridm 13580 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · (1r𝑅)) = 𝑋)
28273adant3 1019 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → (𝑋 · (1r𝑅)) = 𝑋)
2926, 28eqtrd 2229 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → (𝑋 · (((invr𝑅)‘𝑌) · 𝑌)) = 𝑋)
3015, 22, 293eqtrd 2233 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → ((𝑋 / 𝑌) · 𝑌) = 𝑋)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980   = wceq 1364  wcel 2167  cfv 5258  (class class class)co 5922  Basecbs 12678  .rcmulr 12756  1rcur 13515  SRingcsrg 13519  Ringcrg 13552  Unitcui 13643  invrcinvr 13676  /rcdvr 13687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-tpos 6303  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-cmn 13416  df-abl 13417  df-mgp 13477  df-ur 13516  df-srg 13520  df-ring 13554  df-oppr 13624  df-dvdsr 13645  df-unit 13646  df-invr 13677  df-dvr 13688
This theorem is referenced by:  dvreq1  13698  lringuplu  13752
  Copyright terms: Public domain W3C validator