ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  usgrsizedgen GIF version

Theorem usgrsizedgen 15976
Description: In a simple graph, the size of the edge function is the number of the edges of the graph. (Contributed by AV, 4-Jan-2020.) (Revised by AV, 7-Jun-2021.)
Assertion
Ref Expression
usgrsizedgen (𝐺 ∈ USGraph → (iEdg‘𝐺) ≈ (Edg‘𝐺))

Proof of Theorem usgrsizedgen
StepHypRef Expression
1 iedgex 15785 . . . . 5 (𝐺 ∈ USGraph → (iEdg‘𝐺) ∈ V)
2 usgrfun 15924 . . . . 5 (𝐺 ∈ USGraph → Fun (iEdg‘𝐺))
3 fundmeng 6930 . . . . 5 (((iEdg‘𝐺) ∈ V ∧ Fun (iEdg‘𝐺)) → dom (iEdg‘𝐺) ≈ (iEdg‘𝐺))
41, 2, 3syl2anc 411 . . . 4 (𝐺 ∈ USGraph → dom (iEdg‘𝐺) ≈ (iEdg‘𝐺))
54ensymd 6905 . . 3 (𝐺 ∈ USGraph → (iEdg‘𝐺) ≈ dom (iEdg‘𝐺))
61dmexd 4966 . . . 4 (𝐺 ∈ USGraph → dom (iEdg‘𝐺) ∈ V)
7 eqid 2209 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
87usgrf1o 15937 . . . 4 (𝐺 ∈ USGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→ran (iEdg‘𝐺))
9 f1oeng 6878 . . . 4 ((dom (iEdg‘𝐺) ∈ V ∧ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→ran (iEdg‘𝐺)) → dom (iEdg‘𝐺) ≈ ran (iEdg‘𝐺))
106, 8, 9syl2anc 411 . . 3 (𝐺 ∈ USGraph → dom (iEdg‘𝐺) ≈ ran (iEdg‘𝐺))
11 entr 6906 . . 3 (((iEdg‘𝐺) ≈ dom (iEdg‘𝐺) ∧ dom (iEdg‘𝐺) ≈ ran (iEdg‘𝐺)) → (iEdg‘𝐺) ≈ ran (iEdg‘𝐺))
125, 10, 11syl2anc 411 . 2 (𝐺 ∈ USGraph → (iEdg‘𝐺) ≈ ran (iEdg‘𝐺))
13 edgvalg 15825 . 2 (𝐺 ∈ USGraph → (Edg‘𝐺) = ran (iEdg‘𝐺))
1412, 13breqtrrd 4090 1 (𝐺 ∈ USGraph → (iEdg‘𝐺) ≈ (Edg‘𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2180  Vcvv 2779   class class class wbr 4062  dom cdm 4696  ran crn 4697  Fun wfun 5288  1-1-ontowf1o 5293  cfv 5294  cen 6855  iEdgciedg 15779  Edgcedg 15823  USGraphcusgr 15917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-er 6650  df-en 6858  df-sub 8287  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-dec 9547  df-ndx 13001  df-slot 13002  df-base 13004  df-edgf 15771  df-vtx 15780  df-iedg 15781  df-edg 15824  df-usgren 15919
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator