| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > usgrsizedgen | GIF version | ||
| Description: In a simple graph, the size of the edge function is the number of the edges of the graph. (Contributed by AV, 4-Jan-2020.) (Revised by AV, 7-Jun-2021.) |
| Ref | Expression |
|---|---|
| usgrsizedgen | ⊢ (𝐺 ∈ USGraph → (iEdg‘𝐺) ≈ (Edg‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iedgex 15785 | . . . . 5 ⊢ (𝐺 ∈ USGraph → (iEdg‘𝐺) ∈ V) | |
| 2 | usgrfun 15924 | . . . . 5 ⊢ (𝐺 ∈ USGraph → Fun (iEdg‘𝐺)) | |
| 3 | fundmeng 6930 | . . . . 5 ⊢ (((iEdg‘𝐺) ∈ V ∧ Fun (iEdg‘𝐺)) → dom (iEdg‘𝐺) ≈ (iEdg‘𝐺)) | |
| 4 | 1, 2, 3 | syl2anc 411 | . . . 4 ⊢ (𝐺 ∈ USGraph → dom (iEdg‘𝐺) ≈ (iEdg‘𝐺)) |
| 5 | 4 | ensymd 6905 | . . 3 ⊢ (𝐺 ∈ USGraph → (iEdg‘𝐺) ≈ dom (iEdg‘𝐺)) |
| 6 | 1 | dmexd 4966 | . . . 4 ⊢ (𝐺 ∈ USGraph → dom (iEdg‘𝐺) ∈ V) |
| 7 | eqid 2209 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 8 | 7 | usgrf1o 15937 | . . . 4 ⊢ (𝐺 ∈ USGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→ran (iEdg‘𝐺)) |
| 9 | f1oeng 6878 | . . . 4 ⊢ ((dom (iEdg‘𝐺) ∈ V ∧ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→ran (iEdg‘𝐺)) → dom (iEdg‘𝐺) ≈ ran (iEdg‘𝐺)) | |
| 10 | 6, 8, 9 | syl2anc 411 | . . 3 ⊢ (𝐺 ∈ USGraph → dom (iEdg‘𝐺) ≈ ran (iEdg‘𝐺)) |
| 11 | entr 6906 | . . 3 ⊢ (((iEdg‘𝐺) ≈ dom (iEdg‘𝐺) ∧ dom (iEdg‘𝐺) ≈ ran (iEdg‘𝐺)) → (iEdg‘𝐺) ≈ ran (iEdg‘𝐺)) | |
| 12 | 5, 10, 11 | syl2anc 411 | . 2 ⊢ (𝐺 ∈ USGraph → (iEdg‘𝐺) ≈ ran (iEdg‘𝐺)) |
| 13 | edgvalg 15825 | . 2 ⊢ (𝐺 ∈ USGraph → (Edg‘𝐺) = ran (iEdg‘𝐺)) | |
| 14 | 12, 13 | breqtrrd 4090 | 1 ⊢ (𝐺 ∈ USGraph → (iEdg‘𝐺) ≈ (Edg‘𝐺)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2180 Vcvv 2779 class class class wbr 4062 dom cdm 4696 ran crn 4697 Fun wfun 5288 –1-1-onto→wf1o 5293 ‘cfv 5294 ≈ cen 6855 iEdgciedg 15779 Edgcedg 15823 USGraphcusgr 15917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-cnre 8078 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-er 6650 df-en 6858 df-sub 8287 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-9 9144 df-n0 9338 df-dec 9547 df-ndx 13001 df-slot 13002 df-base 13004 df-edgf 15771 df-vtx 15780 df-iedg 15781 df-edg 15824 df-usgren 15919 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |