![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zpnn0elfzo | GIF version |
Description: Membership of an integer increased by a nonnegative integer in a half- open integer range. (Contributed by Alexander van der Vekens, 22-Sep-2018.) |
Ref | Expression |
---|---|
zpnn0elfzo | ⊢ ((𝑍 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑍 + 𝑁) ∈ (𝑍..^((𝑍 + 𝑁) + 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzid 9556 | . . 3 ⊢ (𝑍 ∈ ℤ → 𝑍 ∈ (ℤ≥‘𝑍)) | |
2 | 1 | anim1i 340 | . 2 ⊢ ((𝑍 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑍 ∈ (ℤ≥‘𝑍) ∧ 𝑁 ∈ ℕ0)) |
3 | nn0z 9287 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
4 | zaddcl 9307 | . . . 4 ⊢ ((𝑍 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑍 + 𝑁) ∈ ℤ) | |
5 | 3, 4 | sylan2 286 | . . 3 ⊢ ((𝑍 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑍 + 𝑁) ∈ ℤ) |
6 | elfzomin 10220 | . . 3 ⊢ ((𝑍 + 𝑁) ∈ ℤ → (𝑍 + 𝑁) ∈ ((𝑍 + 𝑁)..^((𝑍 + 𝑁) + 1))) | |
7 | 5, 6 | syl 14 | . 2 ⊢ ((𝑍 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑍 + 𝑁) ∈ ((𝑍 + 𝑁)..^((𝑍 + 𝑁) + 1))) |
8 | uzaddcl 9600 | . . . 4 ⊢ ((𝑍 ∈ (ℤ≥‘𝑍) ∧ 𝑁 ∈ ℕ0) → (𝑍 + 𝑁) ∈ (ℤ≥‘𝑍)) | |
9 | fzoss1 10185 | . . . 4 ⊢ ((𝑍 + 𝑁) ∈ (ℤ≥‘𝑍) → ((𝑍 + 𝑁)..^((𝑍 + 𝑁) + 1)) ⊆ (𝑍..^((𝑍 + 𝑁) + 1))) | |
10 | 8, 9 | syl 14 | . . 3 ⊢ ((𝑍 ∈ (ℤ≥‘𝑍) ∧ 𝑁 ∈ ℕ0) → ((𝑍 + 𝑁)..^((𝑍 + 𝑁) + 1)) ⊆ (𝑍..^((𝑍 + 𝑁) + 1))) |
11 | 10 | sselda 3167 | . 2 ⊢ (((𝑍 ∈ (ℤ≥‘𝑍) ∧ 𝑁 ∈ ℕ0) ∧ (𝑍 + 𝑁) ∈ ((𝑍 + 𝑁)..^((𝑍 + 𝑁) + 1))) → (𝑍 + 𝑁) ∈ (𝑍..^((𝑍 + 𝑁) + 1))) |
12 | 2, 7, 11 | syl2anc 411 | 1 ⊢ ((𝑍 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑍 + 𝑁) ∈ (𝑍..^((𝑍 + 𝑁) + 1))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2158 ⊆ wss 3141 ‘cfv 5228 (class class class)co 5888 1c1 7826 + caddc 7828 ℕ0cn0 9190 ℤcz 9267 ℤ≥cuz 9542 ..^cfzo 10156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-cnex 7916 ax-resscn 7917 ax-1cn 7918 ax-1re 7919 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-addcom 7925 ax-addass 7927 ax-distr 7929 ax-i2m1 7930 ax-0lt1 7931 ax-0id 7933 ax-rnegex 7934 ax-cnre 7936 ax-pre-ltirr 7937 ax-pre-ltwlin 7938 ax-pre-lttrn 7939 ax-pre-apti 7940 ax-pre-ltadd 7941 |
This theorem depends on definitions: df-bi 117 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-fv 5236 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1st 6155 df-2nd 6156 df-pnf 8008 df-mnf 8009 df-xr 8010 df-ltxr 8011 df-le 8012 df-sub 8144 df-neg 8145 df-inn 8934 df-n0 9191 df-z 9268 df-uz 9543 df-fz 10023 df-fzo 10157 |
This theorem is referenced by: zpnn0elfzo1 10222 |
Copyright terms: Public domain | W3C validator |