MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0elleft Structured version   Visualization version   GIF version

Theorem 0elleft 27966
Description: Zero is in the left set of any positive number. (Contributed by Scott Fenton, 13-Mar-2025.)
Hypotheses
Ref Expression
0elleft.1 (𝜑𝐴 No )
0elleft.2 (𝜑 → 0s <s 𝐴)
Assertion
Ref Expression
0elleft (𝜑 → 0s ∈ ( L ‘𝐴))

Proof of Theorem 0elleft
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0elleft.1 . . 3 (𝜑𝐴 No )
2 0elleft.2 . . . 4 (𝜑 → 0s <s 𝐴)
32sgt0ne0d 27898 . . 3 (𝜑𝐴 ≠ 0s )
41, 30elold 27965 . 2 (𝜑 → 0s ∈ ( O ‘( bday 𝐴)))
5 breq1 5169 . . 3 (𝑥 = 0s → (𝑥 <s 𝐴 ↔ 0s <s 𝐴))
6 leftval 27920 . . 3 ( L ‘𝐴) = {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝑥 <s 𝐴}
75, 6elrab2 3711 . 2 ( 0s ∈ ( L ‘𝐴) ↔ ( 0s ∈ ( O ‘( bday 𝐴)) ∧ 0s <s 𝐴))
84, 2, 7sylanbrc 582 1 (𝜑 → 0s ∈ ( L ‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108   class class class wbr 5166  cfv 6573   No csur 27702   <s cslt 27703   bday cbday 27704   0s c0s 27885   O cold 27900   L cleft 27902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-1o 8522  df-2o 8523  df-no 27705  df-slt 27706  df-bday 27707  df-sslt 27844  df-scut 27846  df-0s 27887  df-made 27904  df-old 27905  df-left 27907  df-right 27908
This theorem is referenced by:  cutpos  27985  precsexlem11  28259
  Copyright terms: Public domain W3C validator