Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nna0 | Structured version Visualization version GIF version |
Description: Addition with zero. Theorem 4I(A1) of [Enderton] p. 79. (Contributed by NM, 20-Sep-1995.) |
Ref | Expression |
---|---|
nna0 | ⊢ (𝐴 ∈ ω → (𝐴 +o ∅) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon 7650 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
2 | oa0 8243 | . 2 ⊢ (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ ω → (𝐴 +o ∅) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 ∅c0 4237 Oncon0 6213 (class class class)co 7213 ωcom 7644 +o coa 8199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-oadd 8206 |
This theorem is referenced by: nnacl 8339 nnacom 8345 nnaass 8350 nndi 8351 nnmsucr 8353 nnaword1 8357 nnmordi 8359 nnawordex 8365 nnaordex 8366 nnadju 9811 ackbij1lem13 9846 addnidpi 10515 1lt2pi 10519 hashgadd 13944 |
Copyright terms: Public domain | W3C validator |