| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nna0 | Structured version Visualization version GIF version | ||
| Description: Addition with zero. Theorem 4I(A1) of [Enderton] p. 79. (Contributed by NM, 20-Sep-1995.) |
| Ref | Expression |
|---|---|
| nna0 | ⊢ (𝐴 ∈ ω → (𝐴 +o ∅) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnon 7851 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
| 2 | oa0 8483 | . 2 ⊢ (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ ω → (𝐴 +o ∅) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∅c0 4299 Oncon0 6335 (class class class)co 7390 ωcom 7845 +o coa 8434 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-oadd 8441 |
| This theorem is referenced by: nnacl 8578 nnacom 8584 nnaass 8589 nndi 8590 nnmsucr 8592 nnaword1 8596 nnmordi 8598 nnawordex 8604 nnaordex 8605 nnadju 10158 ackbij1lem13 10191 addnidpi 10861 1lt2pi 10865 hashgadd 14349 precsexlem6 28121 precsexlem7 28122 naddcnfid1 43363 |
| Copyright terms: Public domain | W3C validator |