MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltaddrp2d Structured version   Visualization version   GIF version

Theorem ltaddrp2d 12806
Description: Adding a positive number to another number increases it. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
rpgecld.1 (𝜑𝐴 ∈ ℝ)
rpgecld.2 (𝜑𝐵 ∈ ℝ+)
Assertion
Ref Expression
ltaddrp2d (𝜑𝐴 < (𝐵 + 𝐴))

Proof of Theorem ltaddrp2d
StepHypRef Expression
1 rpgecld.1 . . 3 (𝜑𝐴 ∈ ℝ)
2 rpgecld.2 . . 3 (𝜑𝐵 ∈ ℝ+)
31, 2ltaddrpd 12805 . 2 (𝜑𝐴 < (𝐴 + 𝐵))
41recnd 11003 . . 3 (𝜑𝐴 ∈ ℂ)
52rpcnd 12774 . . 3 (𝜑𝐵 ∈ ℂ)
64, 5addcomd 11177 . 2 (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴))
73, 6breqtrd 5100 1 (𝜑𝐴 < (𝐵 + 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106   class class class wbr 5074  (class class class)co 7275  cr 10870   + caddc 10874   < clt 11009  +crp 12730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-ltxr 11014  df-rp 12731
This theorem is referenced by:  lhop1  25178  cxp2limlem  26125  logdiflbnd  26144  lgamucov  26187  bposlem1  26432  2sqmod  26584  pntpbnd1a  26733  pntibndlem3  26740  pntlemb  26745  pntlemp  26758  madjusmdetlem2  31778  bccolsum  33705  2timesgt  42827  wallispilem4  43609  wallispi  43611  wallispi2lem1  43612  wallispi2lem2  43613  stirlinglem6  43620  stirlinglem7  43621  stirlinglem10  43624  stirlinglem11  43625  dirkertrigeqlem1  43639  fourierdlem42  43690  nnfoctbdjlem  43993
  Copyright terms: Public domain W3C validator