MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltaddrp2d Structured version   Visualization version   GIF version

Theorem ltaddrp2d 13133
Description: Adding a positive number to another number increases it. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
rpgecld.1 (𝜑𝐴 ∈ ℝ)
rpgecld.2 (𝜑𝐵 ∈ ℝ+)
Assertion
Ref Expression
ltaddrp2d (𝜑𝐴 < (𝐵 + 𝐴))

Proof of Theorem ltaddrp2d
StepHypRef Expression
1 rpgecld.1 . . 3 (𝜑𝐴 ∈ ℝ)
2 rpgecld.2 . . 3 (𝜑𝐵 ∈ ℝ+)
31, 2ltaddrpd 13132 . 2 (𝜑𝐴 < (𝐴 + 𝐵))
41recnd 11318 . . 3 (𝜑𝐴 ∈ ℂ)
52rpcnd 13101 . . 3 (𝜑𝐵 ∈ ℂ)
64, 5addcomd 11492 . 2 (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴))
73, 6breqtrd 5192 1 (𝜑𝐴 < (𝐵 + 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108   class class class wbr 5166  (class class class)co 7448  cr 11183   + caddc 11187   < clt 11324  +crp 13057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-ltxr 11329  df-rp 13058
This theorem is referenced by:  lhop1  26073  cxp2limlem  27037  logdiflbnd  27056  lgamucov  27099  bposlem1  27346  2sqmod  27498  pntpbnd1a  27647  pntibndlem3  27654  pntlemb  27659  pntlemp  27672  madjusmdetlem2  33774  bccolsum  35701  2timesgt  45203  wallispilem4  45989  wallispi  45991  wallispi2lem1  45992  wallispi2lem2  45993  stirlinglem6  46000  stirlinglem7  46001  stirlinglem10  46004  stirlinglem11  46005  dirkertrigeqlem1  46019  fourierdlem42  46070  nnfoctbdjlem  46376
  Copyright terms: Public domain W3C validator