MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fv0p1e1 Structured version   Visualization version   GIF version

Theorem fv0p1e1 12243
Description: Function value at 𝑁 + 1 with 𝑁 replaced by 0. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 13-Aug-2022.)
Assertion
Ref Expression
fv0p1e1 (𝑁 = 0 → (𝐹‘(𝑁 + 1)) = (𝐹‘1))

Proof of Theorem fv0p1e1
StepHypRef Expression
1 oveq1 7353 . . 3 (𝑁 = 0 → (𝑁 + 1) = (0 + 1))
2 0p1e1 12242 . . 3 (0 + 1) = 1
31, 2eqtrdi 2782 . 2 (𝑁 = 0 → (𝑁 + 1) = 1)
43fveq2d 6826 1 (𝑁 = 0 → (𝐹‘(𝑁 + 1)) = (𝐹‘1))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cfv 6481  (class class class)co 7346  0cc0 11006  1c1 11007   + caddc 11009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-ltxr 11151
This theorem is referenced by:  mertenslem2  15792  loglesqrt  26698  harmonicbnd3  26945  facgam  27003  wlkonl1iedg  29642  2wlklem  29644  pthdadjvtx  29706  lfgrn1cycl  29783  0enwwlksnge1  29842  2wlkdlem5  29907  2wlkdlem10  29913  rusgrnumwwlkl1  29949  clwwlkn2  30024  3wlkdlem5  30143  3wlkdlem10  30149  upgr3v3e3cycl  30160  upgr4cycl4dv4e  30165  subfacval2  35231  iccelpart  47532  bgoldbtbnd  47908  grtriclwlk3  48044  cycl3grtrilem  48045  gpgprismgr4cycllem10  48203
  Copyright terms: Public domain W3C validator