MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fv0p1e1 Structured version   Visualization version   GIF version

Theorem fv0p1e1 12339
Description: Function value at 𝑁 + 1 with 𝑁 replaced by 0. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 13-Aug-2022.)
Assertion
Ref Expression
fv0p1e1 (𝑁 = 0 → (𝐹‘(𝑁 + 1)) = (𝐹‘1))

Proof of Theorem fv0p1e1
StepHypRef Expression
1 oveq1 7418 . . 3 (𝑁 = 0 → (𝑁 + 1) = (0 + 1))
2 0p1e1 12338 . . 3 (0 + 1) = 1
31, 2eqtrdi 2788 . 2 (𝑁 = 0 → (𝑁 + 1) = 1)
43fveq2d 6895 1 (𝑁 = 0 → (𝐹‘(𝑁 + 1)) = (𝐹‘1))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cfv 6543  (class class class)co 7411  0cc0 11112  1c1 11113   + caddc 11115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-ltxr 11257
This theorem is referenced by:  mertenslem2  15835  loglesqrt  26490  harmonicbnd3  26736  facgam  26794  wlkonl1iedg  29177  2wlklem  29179  pthdadjvtx  29242  lfgrn1cycl  29314  0enwwlksnge1  29373  2wlkdlem5  29438  2wlkdlem10  29444  rusgrnumwwlkl1  29477  clwwlkn2  29552  3wlkdlem5  29671  3wlkdlem10  29677  upgr3v3e3cycl  29688  upgr4cycl4dv4e  29693  subfacval2  34464  iccelpart  46400  bgoldbtbnd  46776
  Copyright terms: Public domain W3C validator