MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ondomen Structured version   Visualization version   GIF version

Theorem ondomen 10034
Description: If a set is dominated by an ordinal, then it is numerable. (Contributed by Mario Carneiro, 5-Jan-2013.)
Assertion
Ref Expression
ondomen ((𝐴 ∈ On ∧ 𝐵𝐴) → 𝐵 ∈ dom card)

Proof of Theorem ondomen
Dummy variables 𝑥 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5152 . . . 4 (𝑥 = 𝐴 → (𝐵𝑥𝐵𝐴))
21rspcev 3612 . . 3 ((𝐴 ∈ On ∧ 𝐵𝐴) → ∃𝑥 ∈ On 𝐵𝑥)
3 ac10ct 10031 . . 3 (∃𝑥 ∈ On 𝐵𝑥 → ∃𝑟 𝑟 We 𝐵)
42, 3syl 17 . 2 ((𝐴 ∈ On ∧ 𝐵𝐴) → ∃𝑟 𝑟 We 𝐵)
5 ween 10032 . 2 (𝐵 ∈ dom card ↔ ∃𝑟 𝑟 We 𝐵)
64, 5sylibr 233 1 ((𝐴 ∈ On ∧ 𝐵𝐴) → 𝐵 ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wex 1781  wcel 2106  wrex 3070   class class class wbr 5148   We wwe 5630  dom cdm 5676  Oncon0 6364  cdom 8939  cardccrd 9932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7367  df-ov 7414  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-en 8942  df-dom 8943  df-card 9936
This theorem is referenced by:  numdom  10035  alephnbtwn2  10069  alephsucdom  10076  fictb  10242  cfslb2n  10265  gchaleph2  10669  hargch  10670  inawinalem  10686  rankcf  10774  tskuni  10780  1stcrestlem  23176  2ndcctbss  23179  2ndcomap  23182  2ndcsep  23183  tx1stc  23374  tx2ndc  23375  met2ndci  24251  rn1st  44277
  Copyright terms: Public domain W3C validator