Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ondomen | Structured version Visualization version GIF version |
Description: If a set is dominated by an ordinal, then it is numerable. (Contributed by Mario Carneiro, 5-Jan-2013.) |
Ref | Expression |
---|---|
ondomen | ⊢ ((𝐴 ∈ On ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ dom card) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5074 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝐵 ≼ 𝑥 ↔ 𝐵 ≼ 𝐴)) | |
2 | 1 | rspcev 3552 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ≼ 𝐴) → ∃𝑥 ∈ On 𝐵 ≼ 𝑥) |
3 | ac10ct 9721 | . . 3 ⊢ (∃𝑥 ∈ On 𝐵 ≼ 𝑥 → ∃𝑟 𝑟 We 𝐵) | |
4 | 2, 3 | syl 17 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ≼ 𝐴) → ∃𝑟 𝑟 We 𝐵) |
5 | ween 9722 | . 2 ⊢ (𝐵 ∈ dom card ↔ ∃𝑟 𝑟 We 𝐵) | |
6 | 4, 5 | sylibr 233 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ dom card) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1783 ∈ wcel 2108 ∃wrex 3064 class class class wbr 5070 We wwe 5534 dom cdm 5580 Oncon0 6251 ≼ cdom 8689 cardccrd 9624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-en 8692 df-dom 8693 df-card 9628 |
This theorem is referenced by: numdom 9725 alephnbtwn2 9759 alephsucdom 9766 fictb 9932 cfslb2n 9955 gchaleph2 10359 hargch 10360 inawinalem 10376 rankcf 10464 tskuni 10470 1stcrestlem 22511 2ndcctbss 22514 2ndcomap 22517 2ndcsep 22518 tx1stc 22709 tx2ndc 22710 met2ndci 23584 |
Copyright terms: Public domain | W3C validator |