MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ondomen Structured version   Visualization version   GIF version

Theorem ondomen 10051
Description: If a set is dominated by an ordinal, then it is numerable. (Contributed by Mario Carneiro, 5-Jan-2013.)
Assertion
Ref Expression
ondomen ((𝐴 ∈ On ∧ 𝐵𝐴) → 𝐵 ∈ dom card)

Proof of Theorem ondomen
Dummy variables 𝑥 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5123 . . . 4 (𝑥 = 𝐴 → (𝐵𝑥𝐵𝐴))
21rspcev 3601 . . 3 ((𝐴 ∈ On ∧ 𝐵𝐴) → ∃𝑥 ∈ On 𝐵𝑥)
3 ac10ct 10048 . . 3 (∃𝑥 ∈ On 𝐵𝑥 → ∃𝑟 𝑟 We 𝐵)
42, 3syl 17 . 2 ((𝐴 ∈ On ∧ 𝐵𝐴) → ∃𝑟 𝑟 We 𝐵)
5 ween 10049 . 2 (𝐵 ∈ dom card ↔ ∃𝑟 𝑟 We 𝐵)
64, 5sylibr 234 1 ((𝐴 ∈ On ∧ 𝐵𝐴) → 𝐵 ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1779  wcel 2108  wrex 3060   class class class wbr 5119   We wwe 5605  dom cdm 5654  Oncon0 6352  cdom 8957  cardccrd 9949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-en 8960  df-dom 8961  df-card 9953
This theorem is referenced by:  numdom  10052  alephnbtwn2  10086  alephsucdom  10093  fictb  10258  cfslb2n  10282  gchaleph2  10686  hargch  10687  inawinalem  10703  rankcf  10791  tskuni  10797  1stcrestlem  23390  2ndcctbss  23393  2ndcomap  23396  2ndcsep  23397  tx1stc  23588  tx2ndc  23589  met2ndci  24461  rn1st  45297
  Copyright terms: Public domain W3C validator