MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ondomen Structured version   Visualization version   GIF version

Theorem ondomen 10077
Description: If a set is dominated by an ordinal, then it is numerable. (Contributed by Mario Carneiro, 5-Jan-2013.)
Assertion
Ref Expression
ondomen ((𝐴 ∈ On ∧ 𝐵𝐴) → 𝐵 ∈ dom card)

Proof of Theorem ondomen
Dummy variables 𝑥 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5147 . . . 4 (𝑥 = 𝐴 → (𝐵𝑥𝐵𝐴))
21rspcev 3622 . . 3 ((𝐴 ∈ On ∧ 𝐵𝐴) → ∃𝑥 ∈ On 𝐵𝑥)
3 ac10ct 10074 . . 3 (∃𝑥 ∈ On 𝐵𝑥 → ∃𝑟 𝑟 We 𝐵)
42, 3syl 17 . 2 ((𝐴 ∈ On ∧ 𝐵𝐴) → ∃𝑟 𝑟 We 𝐵)
5 ween 10075 . 2 (𝐵 ∈ dom card ↔ ∃𝑟 𝑟 We 𝐵)
64, 5sylibr 234 1 ((𝐴 ∈ On ∧ 𝐵𝐴) → 𝐵 ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1779  wcel 2108  wrex 3070   class class class wbr 5143   We wwe 5636  dom cdm 5685  Oncon0 6384  cdom 8983  cardccrd 9975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-en 8986  df-dom 8987  df-card 9979
This theorem is referenced by:  numdom  10078  alephnbtwn2  10112  alephsucdom  10119  fictb  10284  cfslb2n  10308  gchaleph2  10712  hargch  10713  inawinalem  10729  rankcf  10817  tskuni  10823  1stcrestlem  23460  2ndcctbss  23463  2ndcomap  23466  2ndcsep  23467  tx1stc  23658  tx2ndc  23659  met2ndci  24535  rn1st  45280
  Copyright terms: Public domain W3C validator