| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ondomen | Structured version Visualization version GIF version | ||
| Description: If a set is dominated by an ordinal, then it is numerable. (Contributed by Mario Carneiro, 5-Jan-2013.) |
| Ref | Expression |
|---|---|
| ondomen | ⊢ ((𝐴 ∈ On ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ dom card) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5147 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝐵 ≼ 𝑥 ↔ 𝐵 ≼ 𝐴)) | |
| 2 | 1 | rspcev 3622 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ≼ 𝐴) → ∃𝑥 ∈ On 𝐵 ≼ 𝑥) |
| 3 | ac10ct 10074 | . . 3 ⊢ (∃𝑥 ∈ On 𝐵 ≼ 𝑥 → ∃𝑟 𝑟 We 𝐵) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ≼ 𝐴) → ∃𝑟 𝑟 We 𝐵) |
| 5 | ween 10075 | . 2 ⊢ (𝐵 ∈ dom card ↔ ∃𝑟 𝑟 We 𝐵) | |
| 6 | 4, 5 | sylibr 234 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ dom card) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 ∈ wcel 2108 ∃wrex 3070 class class class wbr 5143 We wwe 5636 dom cdm 5685 Oncon0 6384 ≼ cdom 8983 cardccrd 9975 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-en 8986 df-dom 8987 df-card 9979 |
| This theorem is referenced by: numdom 10078 alephnbtwn2 10112 alephsucdom 10119 fictb 10284 cfslb2n 10308 gchaleph2 10712 hargch 10713 inawinalem 10729 rankcf 10817 tskuni 10823 1stcrestlem 23460 2ndcctbss 23463 2ndcomap 23466 2ndcsep 23467 tx1stc 23658 tx2ndc 23659 met2ndci 24535 rn1st 45280 |
| Copyright terms: Public domain | W3C validator |