![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addid0 | Structured version Visualization version GIF version |
Description: If adding a number to a another number yields the other number, the added number must be 0. This shows that 0 is the unique (right) identity of the complex numbers. (Contributed by AV, 17-Jan-2021.) |
Ref | Expression |
---|---|
addid0 | ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋 + 𝑌) = 𝑋 ↔ 𝑌 = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 484 | . . . 4 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → 𝑋 ∈ ℂ) | |
2 | simpr 486 | . . . 4 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → 𝑌 ∈ ℂ) | |
3 | 1, 1, 2 | subaddd 11535 | . . 3 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋 − 𝑋) = 𝑌 ↔ (𝑋 + 𝑌) = 𝑋)) |
4 | eqcom 2740 | . . . . 5 ⊢ ((𝑋 − 𝑋) = 𝑌 ↔ 𝑌 = (𝑋 − 𝑋)) | |
5 | simpr 486 | . . . . . . 7 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 = (𝑋 − 𝑋)) → 𝑌 = (𝑋 − 𝑋)) | |
6 | subid 11425 | . . . . . . . 8 ⊢ (𝑋 ∈ ℂ → (𝑋 − 𝑋) = 0) | |
7 | 6 | adantr 482 | . . . . . . 7 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 = (𝑋 − 𝑋)) → (𝑋 − 𝑋) = 0) |
8 | 5, 7 | eqtrd 2773 | . . . . . 6 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 = (𝑋 − 𝑋)) → 𝑌 = 0) |
9 | 8 | ex 414 | . . . . 5 ⊢ (𝑋 ∈ ℂ → (𝑌 = (𝑋 − 𝑋) → 𝑌 = 0)) |
10 | 4, 9 | biimtrid 241 | . . . 4 ⊢ (𝑋 ∈ ℂ → ((𝑋 − 𝑋) = 𝑌 → 𝑌 = 0)) |
11 | 10 | adantr 482 | . . 3 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋 − 𝑋) = 𝑌 → 𝑌 = 0)) |
12 | 3, 11 | sylbird 260 | . 2 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋 + 𝑌) = 𝑋 → 𝑌 = 0)) |
13 | oveq2 7366 | . . . . 5 ⊢ (𝑌 = 0 → (𝑋 + 𝑌) = (𝑋 + 0)) | |
14 | addid1 11340 | . . . . 5 ⊢ (𝑋 ∈ ℂ → (𝑋 + 0) = 𝑋) | |
15 | 13, 14 | sylan9eqr 2795 | . . . 4 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 = 0) → (𝑋 + 𝑌) = 𝑋) |
16 | 15 | ex 414 | . . 3 ⊢ (𝑋 ∈ ℂ → (𝑌 = 0 → (𝑋 + 𝑌) = 𝑋)) |
17 | 16 | adantr 482 | . 2 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → (𝑌 = 0 → (𝑋 + 𝑌) = 𝑋)) |
18 | 12, 17 | impbid 211 | 1 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋 + 𝑌) = 𝑋 ↔ 𝑌 = 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 (class class class)co 7358 ℂcc 11054 0cc0 11056 + caddc 11059 − cmin 11390 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-po 5546 df-so 5547 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-er 8651 df-en 8887 df-dom 8888 df-sdom 8889 df-pnf 11196 df-mnf 11197 df-ltxr 11199 df-sub 11392 |
This theorem is referenced by: addn0nid 11580 addsq2nreurex 26808 sqrtcval 42001 line2xlem 46925 |
Copyright terms: Public domain | W3C validator |