Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  addid0 Structured version   Visualization version   GIF version

 Description: If adding a number to a another number yields the other number, the added number must be 0. This shows that 0 is the unique (right) identity of the complex numbers. (Contributed by AV, 17-Jan-2021.)
Assertion
Ref Expression
addid0 ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋 + 𝑌) = 𝑋𝑌 = 0))

StepHypRef Expression
1 simpl 486 . . . 4 ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → 𝑋 ∈ ℂ)
2 simpr 488 . . . 4 ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → 𝑌 ∈ ℂ)
31, 1, 2subaddd 11006 . . 3 ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋𝑋) = 𝑌 ↔ (𝑋 + 𝑌) = 𝑋))
4 eqcom 2805 . . . . 5 ((𝑋𝑋) = 𝑌𝑌 = (𝑋𝑋))
5 simpr 488 . . . . . . 7 ((𝑋 ∈ ℂ ∧ 𝑌 = (𝑋𝑋)) → 𝑌 = (𝑋𝑋))
6 subid 10896 . . . . . . . 8 (𝑋 ∈ ℂ → (𝑋𝑋) = 0)
76adantr 484 . . . . . . 7 ((𝑋 ∈ ℂ ∧ 𝑌 = (𝑋𝑋)) → (𝑋𝑋) = 0)
85, 7eqtrd 2833 . . . . . 6 ((𝑋 ∈ ℂ ∧ 𝑌 = (𝑋𝑋)) → 𝑌 = 0)
98ex 416 . . . . 5 (𝑋 ∈ ℂ → (𝑌 = (𝑋𝑋) → 𝑌 = 0))
104, 9syl5bi 245 . . . 4 (𝑋 ∈ ℂ → ((𝑋𝑋) = 𝑌𝑌 = 0))
1110adantr 484 . . 3 ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋𝑋) = 𝑌𝑌 = 0))
123, 11sylbird 263 . 2 ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋 + 𝑌) = 𝑋𝑌 = 0))
13 oveq2 7143 . . . . 5 (𝑌 = 0 → (𝑋 + 𝑌) = (𝑋 + 0))
14 addid1 10811 . . . . 5 (𝑋 ∈ ℂ → (𝑋 + 0) = 𝑋)
1513, 14sylan9eqr 2855 . . . 4 ((𝑋 ∈ ℂ ∧ 𝑌 = 0) → (𝑋 + 𝑌) = 𝑋)
1615ex 416 . . 3 (𝑋 ∈ ℂ → (𝑌 = 0 → (𝑋 + 𝑌) = 𝑋))
1716adantr 484 . 2 ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → (𝑌 = 0 → (𝑋 + 𝑌) = 𝑋))
1812, 17impbid 215 1 ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋 + 𝑌) = 𝑋𝑌 = 0))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  (class class class)co 7135  ℂcc 10526  0cc0 10528   + caddc 10531   − cmin 10861 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-resscn 10585  ax-1cn 10586  ax-icn 10587  ax-addcl 10588  ax-addrcl 10589  ax-mulcl 10590  ax-mulrcl 10591  ax-mulcom 10592  ax-addass 10593  ax-mulass 10594  ax-distr 10595  ax-i2m1 10596  ax-1ne0 10597  ax-1rid 10598  ax-rnegex 10599  ax-rrecex 10600  ax-cnre 10601  ax-pre-lttri 10602  ax-pre-lttrn 10603  ax-pre-ltadd 10604 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-er 8274  df-en 8495  df-dom 8496  df-sdom 8497  df-pnf 10668  df-mnf 10669  df-ltxr 10671  df-sub 10863 This theorem is referenced by:  addn0nid  11051  addsq2nreurex  26035  sqrtcval  40356  line2xlem  45181
 Copyright terms: Public domain W3C validator