![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addid0 | Structured version Visualization version GIF version |
Description: If adding a number to a another number yields the other number, the added number must be 0. This shows that 0 is the unique (right) identity of the complex numbers. (Contributed by AV, 17-Jan-2021.) |
Ref | Expression |
---|---|
addid0 | ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋 + 𝑌) = 𝑋 ↔ 𝑌 = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . 4 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → 𝑋 ∈ ℂ) | |
2 | simpr 484 | . . . 4 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → 𝑌 ∈ ℂ) | |
3 | 1, 1, 2 | subaddd 11620 | . . 3 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋 − 𝑋) = 𝑌 ↔ (𝑋 + 𝑌) = 𝑋)) |
4 | eqcom 2735 | . . . . 5 ⊢ ((𝑋 − 𝑋) = 𝑌 ↔ 𝑌 = (𝑋 − 𝑋)) | |
5 | simpr 484 | . . . . . . 7 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 = (𝑋 − 𝑋)) → 𝑌 = (𝑋 − 𝑋)) | |
6 | subid 11510 | . . . . . . . 8 ⊢ (𝑋 ∈ ℂ → (𝑋 − 𝑋) = 0) | |
7 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 = (𝑋 − 𝑋)) → (𝑋 − 𝑋) = 0) |
8 | 5, 7 | eqtrd 2768 | . . . . . 6 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 = (𝑋 − 𝑋)) → 𝑌 = 0) |
9 | 8 | ex 412 | . . . . 5 ⊢ (𝑋 ∈ ℂ → (𝑌 = (𝑋 − 𝑋) → 𝑌 = 0)) |
10 | 4, 9 | biimtrid 241 | . . . 4 ⊢ (𝑋 ∈ ℂ → ((𝑋 − 𝑋) = 𝑌 → 𝑌 = 0)) |
11 | 10 | adantr 480 | . . 3 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋 − 𝑋) = 𝑌 → 𝑌 = 0)) |
12 | 3, 11 | sylbird 260 | . 2 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋 + 𝑌) = 𝑋 → 𝑌 = 0)) |
13 | oveq2 7428 | . . . . 5 ⊢ (𝑌 = 0 → (𝑋 + 𝑌) = (𝑋 + 0)) | |
14 | addrid 11425 | . . . . 5 ⊢ (𝑋 ∈ ℂ → (𝑋 + 0) = 𝑋) | |
15 | 13, 14 | sylan9eqr 2790 | . . . 4 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 = 0) → (𝑋 + 𝑌) = 𝑋) |
16 | 15 | ex 412 | . . 3 ⊢ (𝑋 ∈ ℂ → (𝑌 = 0 → (𝑋 + 𝑌) = 𝑋)) |
17 | 16 | adantr 480 | . 2 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → (𝑌 = 0 → (𝑋 + 𝑌) = 𝑋)) |
18 | 12, 17 | impbid 211 | 1 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋 + 𝑌) = 𝑋 ↔ 𝑌 = 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 (class class class)co 7420 ℂcc 11137 0cc0 11139 + caddc 11142 − cmin 11475 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11281 df-mnf 11282 df-ltxr 11284 df-sub 11477 |
This theorem is referenced by: addn0nid 11665 addsq2nreurex 27390 sqrtcval 43071 line2xlem 47826 |
Copyright terms: Public domain | W3C validator |