MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsq2nreurex Structured version   Visualization version   GIF version

Theorem addsq2nreurex 27355
Description: For each complex number 𝐶, there is no unique complex number 𝑎 added to the square of another complex number 𝑏 resulting in the given complex number 𝐶. (Contributed by AV, 2-Jul-2023.)
Assertion
Ref Expression
addsq2nreurex (𝐶 ∈ ℂ → ¬ ∃!𝑎 ∈ ℂ ∃𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶)
Distinct variable group:   𝐶,𝑎,𝑏

Proof of Theorem addsq2nreurex
StepHypRef Expression
1 peano2cnm 11488 . 2 (𝐶 ∈ ℂ → (𝐶 − 1) ∈ ℂ)
2 id 22 . . 3 (𝐶 ∈ ℂ → 𝐶 ∈ ℂ)
3 4cn 12271 . . . 4 4 ∈ ℂ
43a1i 11 . . 3 (𝐶 ∈ ℂ → 4 ∈ ℂ)
52, 4subcld 11533 . 2 (𝐶 ∈ ℂ → (𝐶 − 4) ∈ ℂ)
6 1cnd 11169 . . 3 (𝐶 ∈ ℂ → 1 ∈ ℂ)
7 1re 11174 . . . . 5 1 ∈ ℝ
8 1lt4 12357 . . . . 5 1 < 4
97, 8ltneii 11287 . . . 4 1 ≠ 4
109a1i 11 . . 3 (𝐶 ∈ ℂ → 1 ≠ 4)
112, 6, 4, 10subneintrd 11577 . 2 (𝐶 ∈ ℂ → (𝐶 − 1) ≠ (𝐶 − 4))
12 oveq1 7394 . . . . . 6 (𝑏 = 1 → (𝑏↑2) = (1↑2))
1312oveq2d 7403 . . . . 5 (𝑏 = 1 → ((𝐶 − 1) + (𝑏↑2)) = ((𝐶 − 1) + (1↑2)))
1413eqeq1d 2731 . . . 4 (𝑏 = 1 → (((𝐶 − 1) + (𝑏↑2)) = 𝐶 ↔ ((𝐶 − 1) + (1↑2)) = 𝐶))
1514adantl 481 . . 3 ((𝐶 ∈ ℂ ∧ 𝑏 = 1) → (((𝐶 − 1) + (𝑏↑2)) = 𝐶 ↔ ((𝐶 − 1) + (1↑2)) = 𝐶))
16 sq1 14160 . . . . 5 (1↑2) = 1
1716oveq2i 7398 . . . 4 ((𝐶 − 1) + (1↑2)) = ((𝐶 − 1) + 1)
18 npcan1 11603 . . . 4 (𝐶 ∈ ℂ → ((𝐶 − 1) + 1) = 𝐶)
1917, 18eqtrid 2776 . . 3 (𝐶 ∈ ℂ → ((𝐶 − 1) + (1↑2)) = 𝐶)
206, 15, 19rspcedvd 3590 . 2 (𝐶 ∈ ℂ → ∃𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶)
21 2cnd 12264 . . 3 (𝐶 ∈ ℂ → 2 ∈ ℂ)
22 oveq1 7394 . . . . . 6 (𝑏 = 2 → (𝑏↑2) = (2↑2))
2322oveq2d 7403 . . . . 5 (𝑏 = 2 → ((𝐶 − 4) + (𝑏↑2)) = ((𝐶 − 4) + (2↑2)))
2423eqeq1d 2731 . . . 4 (𝑏 = 2 → (((𝐶 − 4) + (𝑏↑2)) = 𝐶 ↔ ((𝐶 − 4) + (2↑2)) = 𝐶))
2524adantl 481 . . 3 ((𝐶 ∈ ℂ ∧ 𝑏 = 2) → (((𝐶 − 4) + (𝑏↑2)) = 𝐶 ↔ ((𝐶 − 4) + (2↑2)) = 𝐶))
26 2cn 12261 . . . . . . 7 2 ∈ ℂ
2726sqcli 14146 . . . . . 6 (2↑2) ∈ ℂ
2827a1i 11 . . . . 5 (𝐶 ∈ ℂ → (2↑2) ∈ ℂ)
292, 4, 28subadd23d 11555 . . . 4 (𝐶 ∈ ℂ → ((𝐶 − 4) + (2↑2)) = (𝐶 + ((2↑2) − 4)))
30 sq2 14162 . . . . . . 7 (2↑2) = 4
3130a1i 11 . . . . . 6 (𝐶 ∈ ℂ → (2↑2) = 4)
3228, 31subeq0bd 11604 . . . . 5 (𝐶 ∈ ℂ → ((2↑2) − 4) = 0)
3327, 3subcli 11498 . . . . . 6 ((2↑2) − 4) ∈ ℂ
34 addid0 11597 . . . . . 6 ((𝐶 ∈ ℂ ∧ ((2↑2) − 4) ∈ ℂ) → ((𝐶 + ((2↑2) − 4)) = 𝐶 ↔ ((2↑2) − 4) = 0))
3533, 34mpan2 691 . . . . 5 (𝐶 ∈ ℂ → ((𝐶 + ((2↑2) − 4)) = 𝐶 ↔ ((2↑2) − 4) = 0))
3632, 35mpbird 257 . . . 4 (𝐶 ∈ ℂ → (𝐶 + ((2↑2) − 4)) = 𝐶)
3729, 36eqtrd 2764 . . 3 (𝐶 ∈ ℂ → ((𝐶 − 4) + (2↑2)) = 𝐶)
3821, 25, 37rspcedvd 3590 . 2 (𝐶 ∈ ℂ → ∃𝑏 ∈ ℂ ((𝐶 − 4) + (𝑏↑2)) = 𝐶)
39 oveq1 7394 . . . . . 6 (𝑎 = (𝐶 − 1) → (𝑎 + (𝑏↑2)) = ((𝐶 − 1) + (𝑏↑2)))
4039eqeq1d 2731 . . . . 5 (𝑎 = (𝐶 − 1) → ((𝑎 + (𝑏↑2)) = 𝐶 ↔ ((𝐶 − 1) + (𝑏↑2)) = 𝐶))
4140rexbidv 3157 . . . 4 (𝑎 = (𝐶 − 1) → (∃𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ∃𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶))
42 oveq1 7394 . . . . . 6 (𝑎 = (𝐶 − 4) → (𝑎 + (𝑏↑2)) = ((𝐶 − 4) + (𝑏↑2)))
4342eqeq1d 2731 . . . . 5 (𝑎 = (𝐶 − 4) → ((𝑎 + (𝑏↑2)) = 𝐶 ↔ ((𝐶 − 4) + (𝑏↑2)) = 𝐶))
4443rexbidv 3157 . . . 4 (𝑎 = (𝐶 − 4) → (∃𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ∃𝑏 ∈ ℂ ((𝐶 − 4) + (𝑏↑2)) = 𝐶))
4541, 442nreu 4407 . . 3 (((𝐶 − 1) ∈ ℂ ∧ (𝐶 − 4) ∈ ℂ ∧ (𝐶 − 1) ≠ (𝐶 − 4)) → ((∃𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶 ∧ ∃𝑏 ∈ ℂ ((𝐶 − 4) + (𝑏↑2)) = 𝐶) → ¬ ∃!𝑎 ∈ ℂ ∃𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶))
4645imp 406 . 2 ((((𝐶 − 1) ∈ ℂ ∧ (𝐶 − 4) ∈ ℂ ∧ (𝐶 − 1) ≠ (𝐶 − 4)) ∧ (∃𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶 ∧ ∃𝑏 ∈ ℂ ((𝐶 − 4) + (𝑏↑2)) = 𝐶)) → ¬ ∃!𝑎 ∈ ℂ ∃𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶)
471, 5, 11, 20, 38, 46syl32anc 1380 1 (𝐶 ∈ ℂ → ¬ ∃!𝑎 ∈ ℂ ∃𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  ∃!wreu 3352  (class class class)co 7387  cc 11066  0cc0 11068  1c1 11069   + caddc 11071  cmin 11405  2c2 12241  4c4 12243  cexp 14026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-n0 12443  df-z 12530  df-uz 12794  df-seq 13967  df-exp 14027
This theorem is referenced by:  addsqn2reurex2  27356
  Copyright terms: Public domain W3C validator