MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsq2nreurex Structured version   Visualization version   GIF version

Theorem addsq2nreurex 27488
Description: For each complex number 𝐶, there is no unique complex number 𝑎 added to the square of another complex number 𝑏 resulting in the given complex number 𝐶. (Contributed by AV, 2-Jul-2023.)
Assertion
Ref Expression
addsq2nreurex (𝐶 ∈ ℂ → ¬ ∃!𝑎 ∈ ℂ ∃𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶)
Distinct variable group:   𝐶,𝑎,𝑏

Proof of Theorem addsq2nreurex
StepHypRef Expression
1 peano2cnm 11575 . 2 (𝐶 ∈ ℂ → (𝐶 − 1) ∈ ℂ)
2 id 22 . . 3 (𝐶 ∈ ℂ → 𝐶 ∈ ℂ)
3 4cn 12351 . . . 4 4 ∈ ℂ
43a1i 11 . . 3 (𝐶 ∈ ℂ → 4 ∈ ℂ)
52, 4subcld 11620 . 2 (𝐶 ∈ ℂ → (𝐶 − 4) ∈ ℂ)
6 1cnd 11256 . . 3 (𝐶 ∈ ℂ → 1 ∈ ℂ)
7 1re 11261 . . . . 5 1 ∈ ℝ
8 1lt4 12442 . . . . 5 1 < 4
97, 8ltneii 11374 . . . 4 1 ≠ 4
109a1i 11 . . 3 (𝐶 ∈ ℂ → 1 ≠ 4)
112, 6, 4, 10subneintrd 11664 . 2 (𝐶 ∈ ℂ → (𝐶 − 1) ≠ (𝐶 − 4))
12 oveq1 7438 . . . . . 6 (𝑏 = 1 → (𝑏↑2) = (1↑2))
1312oveq2d 7447 . . . . 5 (𝑏 = 1 → ((𝐶 − 1) + (𝑏↑2)) = ((𝐶 − 1) + (1↑2)))
1413eqeq1d 2739 . . . 4 (𝑏 = 1 → (((𝐶 − 1) + (𝑏↑2)) = 𝐶 ↔ ((𝐶 − 1) + (1↑2)) = 𝐶))
1514adantl 481 . . 3 ((𝐶 ∈ ℂ ∧ 𝑏 = 1) → (((𝐶 − 1) + (𝑏↑2)) = 𝐶 ↔ ((𝐶 − 1) + (1↑2)) = 𝐶))
16 sq1 14234 . . . . 5 (1↑2) = 1
1716oveq2i 7442 . . . 4 ((𝐶 − 1) + (1↑2)) = ((𝐶 − 1) + 1)
18 npcan1 11688 . . . 4 (𝐶 ∈ ℂ → ((𝐶 − 1) + 1) = 𝐶)
1917, 18eqtrid 2789 . . 3 (𝐶 ∈ ℂ → ((𝐶 − 1) + (1↑2)) = 𝐶)
206, 15, 19rspcedvd 3624 . 2 (𝐶 ∈ ℂ → ∃𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶)
21 2cnd 12344 . . 3 (𝐶 ∈ ℂ → 2 ∈ ℂ)
22 oveq1 7438 . . . . . 6 (𝑏 = 2 → (𝑏↑2) = (2↑2))
2322oveq2d 7447 . . . . 5 (𝑏 = 2 → ((𝐶 − 4) + (𝑏↑2)) = ((𝐶 − 4) + (2↑2)))
2423eqeq1d 2739 . . . 4 (𝑏 = 2 → (((𝐶 − 4) + (𝑏↑2)) = 𝐶 ↔ ((𝐶 − 4) + (2↑2)) = 𝐶))
2524adantl 481 . . 3 ((𝐶 ∈ ℂ ∧ 𝑏 = 2) → (((𝐶 − 4) + (𝑏↑2)) = 𝐶 ↔ ((𝐶 − 4) + (2↑2)) = 𝐶))
26 2cn 12341 . . . . . . 7 2 ∈ ℂ
2726sqcli 14220 . . . . . 6 (2↑2) ∈ ℂ
2827a1i 11 . . . . 5 (𝐶 ∈ ℂ → (2↑2) ∈ ℂ)
292, 4, 28subadd23d 11642 . . . 4 (𝐶 ∈ ℂ → ((𝐶 − 4) + (2↑2)) = (𝐶 + ((2↑2) − 4)))
30 sq2 14236 . . . . . . 7 (2↑2) = 4
3130a1i 11 . . . . . 6 (𝐶 ∈ ℂ → (2↑2) = 4)
3228, 31subeq0bd 11689 . . . . 5 (𝐶 ∈ ℂ → ((2↑2) − 4) = 0)
3327, 3subcli 11585 . . . . . 6 ((2↑2) − 4) ∈ ℂ
34 addid0 11682 . . . . . 6 ((𝐶 ∈ ℂ ∧ ((2↑2) − 4) ∈ ℂ) → ((𝐶 + ((2↑2) − 4)) = 𝐶 ↔ ((2↑2) − 4) = 0))
3533, 34mpan2 691 . . . . 5 (𝐶 ∈ ℂ → ((𝐶 + ((2↑2) − 4)) = 𝐶 ↔ ((2↑2) − 4) = 0))
3632, 35mpbird 257 . . . 4 (𝐶 ∈ ℂ → (𝐶 + ((2↑2) − 4)) = 𝐶)
3729, 36eqtrd 2777 . . 3 (𝐶 ∈ ℂ → ((𝐶 − 4) + (2↑2)) = 𝐶)
3821, 25, 37rspcedvd 3624 . 2 (𝐶 ∈ ℂ → ∃𝑏 ∈ ℂ ((𝐶 − 4) + (𝑏↑2)) = 𝐶)
39 oveq1 7438 . . . . . 6 (𝑎 = (𝐶 − 1) → (𝑎 + (𝑏↑2)) = ((𝐶 − 1) + (𝑏↑2)))
4039eqeq1d 2739 . . . . 5 (𝑎 = (𝐶 − 1) → ((𝑎 + (𝑏↑2)) = 𝐶 ↔ ((𝐶 − 1) + (𝑏↑2)) = 𝐶))
4140rexbidv 3179 . . . 4 (𝑎 = (𝐶 − 1) → (∃𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ∃𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶))
42 oveq1 7438 . . . . . 6 (𝑎 = (𝐶 − 4) → (𝑎 + (𝑏↑2)) = ((𝐶 − 4) + (𝑏↑2)))
4342eqeq1d 2739 . . . . 5 (𝑎 = (𝐶 − 4) → ((𝑎 + (𝑏↑2)) = 𝐶 ↔ ((𝐶 − 4) + (𝑏↑2)) = 𝐶))
4443rexbidv 3179 . . . 4 (𝑎 = (𝐶 − 4) → (∃𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ∃𝑏 ∈ ℂ ((𝐶 − 4) + (𝑏↑2)) = 𝐶))
4541, 442nreu 4444 . . 3 (((𝐶 − 1) ∈ ℂ ∧ (𝐶 − 4) ∈ ℂ ∧ (𝐶 − 1) ≠ (𝐶 − 4)) → ((∃𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶 ∧ ∃𝑏 ∈ ℂ ((𝐶 − 4) + (𝑏↑2)) = 𝐶) → ¬ ∃!𝑎 ∈ ℂ ∃𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶))
4645imp 406 . 2 ((((𝐶 − 1) ∈ ℂ ∧ (𝐶 − 4) ∈ ℂ ∧ (𝐶 − 1) ≠ (𝐶 − 4)) ∧ (∃𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶 ∧ ∃𝑏 ∈ ℂ ((𝐶 − 4) + (𝑏↑2)) = 𝐶)) → ¬ ∃!𝑎 ∈ ℂ ∃𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶)
471, 5, 11, 20, 38, 46syl32anc 1380 1 (𝐶 ∈ ℂ → ¬ ∃!𝑎 ∈ ℂ ∃𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wrex 3070  ∃!wreu 3378  (class class class)co 7431  cc 11153  0cc0 11155  1c1 11156   + caddc 11158  cmin 11492  2c2 12321  4c4 12323  cexp 14102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-n0 12527  df-z 12614  df-uz 12879  df-seq 14043  df-exp 14103
This theorem is referenced by:  addsqn2reurex2  27489
  Copyright terms: Public domain W3C validator