MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsq2nreurex Structured version   Visualization version   GIF version

Theorem addsq2nreurex 26590
Description: For each complex number 𝐶, there is no unique complex number 𝑎 added to the square of another complex number 𝑏 resulting in the given complex number 𝐶. (Contributed by AV, 2-Jul-2023.)
Assertion
Ref Expression
addsq2nreurex (𝐶 ∈ ℂ → ¬ ∃!𝑎 ∈ ℂ ∃𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶)
Distinct variable group:   𝐶,𝑎,𝑏

Proof of Theorem addsq2nreurex
StepHypRef Expression
1 peano2cnm 11287 . 2 (𝐶 ∈ ℂ → (𝐶 − 1) ∈ ℂ)
2 id 22 . . 3 (𝐶 ∈ ℂ → 𝐶 ∈ ℂ)
3 4cn 12058 . . . 4 4 ∈ ℂ
43a1i 11 . . 3 (𝐶 ∈ ℂ → 4 ∈ ℂ)
52, 4subcld 11332 . 2 (𝐶 ∈ ℂ → (𝐶 − 4) ∈ ℂ)
6 1cnd 10971 . . 3 (𝐶 ∈ ℂ → 1 ∈ ℂ)
7 1re 10976 . . . . 5 1 ∈ ℝ
8 1lt4 12149 . . . . 5 1 < 4
97, 8ltneii 11088 . . . 4 1 ≠ 4
109a1i 11 . . 3 (𝐶 ∈ ℂ → 1 ≠ 4)
112, 6, 4, 10subneintrd 11376 . 2 (𝐶 ∈ ℂ → (𝐶 − 1) ≠ (𝐶 − 4))
12 oveq1 7278 . . . . . 6 (𝑏 = 1 → (𝑏↑2) = (1↑2))
1312oveq2d 7287 . . . . 5 (𝑏 = 1 → ((𝐶 − 1) + (𝑏↑2)) = ((𝐶 − 1) + (1↑2)))
1413eqeq1d 2742 . . . 4 (𝑏 = 1 → (((𝐶 − 1) + (𝑏↑2)) = 𝐶 ↔ ((𝐶 − 1) + (1↑2)) = 𝐶))
1514adantl 482 . . 3 ((𝐶 ∈ ℂ ∧ 𝑏 = 1) → (((𝐶 − 1) + (𝑏↑2)) = 𝐶 ↔ ((𝐶 − 1) + (1↑2)) = 𝐶))
16 sq1 13910 . . . . 5 (1↑2) = 1
1716oveq2i 7282 . . . 4 ((𝐶 − 1) + (1↑2)) = ((𝐶 − 1) + 1)
18 npcan1 11400 . . . 4 (𝐶 ∈ ℂ → ((𝐶 − 1) + 1) = 𝐶)
1917, 18eqtrid 2792 . . 3 (𝐶 ∈ ℂ → ((𝐶 − 1) + (1↑2)) = 𝐶)
206, 15, 19rspcedvd 3564 . 2 (𝐶 ∈ ℂ → ∃𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶)
21 2cnd 12051 . . 3 (𝐶 ∈ ℂ → 2 ∈ ℂ)
22 oveq1 7278 . . . . . 6 (𝑏 = 2 → (𝑏↑2) = (2↑2))
2322oveq2d 7287 . . . . 5 (𝑏 = 2 → ((𝐶 − 4) + (𝑏↑2)) = ((𝐶 − 4) + (2↑2)))
2423eqeq1d 2742 . . . 4 (𝑏 = 2 → (((𝐶 − 4) + (𝑏↑2)) = 𝐶 ↔ ((𝐶 − 4) + (2↑2)) = 𝐶))
2524adantl 482 . . 3 ((𝐶 ∈ ℂ ∧ 𝑏 = 2) → (((𝐶 − 4) + (𝑏↑2)) = 𝐶 ↔ ((𝐶 − 4) + (2↑2)) = 𝐶))
26 2cn 12048 . . . . . . 7 2 ∈ ℂ
2726sqcli 13896 . . . . . 6 (2↑2) ∈ ℂ
2827a1i 11 . . . . 5 (𝐶 ∈ ℂ → (2↑2) ∈ ℂ)
292, 4, 28subadd23d 11354 . . . 4 (𝐶 ∈ ℂ → ((𝐶 − 4) + (2↑2)) = (𝐶 + ((2↑2) − 4)))
30 sq2 13912 . . . . . . 7 (2↑2) = 4
3130a1i 11 . . . . . 6 (𝐶 ∈ ℂ → (2↑2) = 4)
3228, 31subeq0bd 11401 . . . . 5 (𝐶 ∈ ℂ → ((2↑2) − 4) = 0)
3327, 3subcli 11297 . . . . . 6 ((2↑2) − 4) ∈ ℂ
34 addid0 11394 . . . . . 6 ((𝐶 ∈ ℂ ∧ ((2↑2) − 4) ∈ ℂ) → ((𝐶 + ((2↑2) − 4)) = 𝐶 ↔ ((2↑2) − 4) = 0))
3533, 34mpan2 688 . . . . 5 (𝐶 ∈ ℂ → ((𝐶 + ((2↑2) − 4)) = 𝐶 ↔ ((2↑2) − 4) = 0))
3632, 35mpbird 256 . . . 4 (𝐶 ∈ ℂ → (𝐶 + ((2↑2) − 4)) = 𝐶)
3729, 36eqtrd 2780 . . 3 (𝐶 ∈ ℂ → ((𝐶 − 4) + (2↑2)) = 𝐶)
3821, 25, 37rspcedvd 3564 . 2 (𝐶 ∈ ℂ → ∃𝑏 ∈ ℂ ((𝐶 − 4) + (𝑏↑2)) = 𝐶)
39 oveq1 7278 . . . . . 6 (𝑎 = (𝐶 − 1) → (𝑎 + (𝑏↑2)) = ((𝐶 − 1) + (𝑏↑2)))
4039eqeq1d 2742 . . . . 5 (𝑎 = (𝐶 − 1) → ((𝑎 + (𝑏↑2)) = 𝐶 ↔ ((𝐶 − 1) + (𝑏↑2)) = 𝐶))
4140rexbidv 3228 . . . 4 (𝑎 = (𝐶 − 1) → (∃𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ∃𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶))
42 oveq1 7278 . . . . . 6 (𝑎 = (𝐶 − 4) → (𝑎 + (𝑏↑2)) = ((𝐶 − 4) + (𝑏↑2)))
4342eqeq1d 2742 . . . . 5 (𝑎 = (𝐶 − 4) → ((𝑎 + (𝑏↑2)) = 𝐶 ↔ ((𝐶 − 4) + (𝑏↑2)) = 𝐶))
4443rexbidv 3228 . . . 4 (𝑎 = (𝐶 − 4) → (∃𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ∃𝑏 ∈ ℂ ((𝐶 − 4) + (𝑏↑2)) = 𝐶))
4541, 442nreu 4381 . . 3 (((𝐶 − 1) ∈ ℂ ∧ (𝐶 − 4) ∈ ℂ ∧ (𝐶 − 1) ≠ (𝐶 − 4)) → ((∃𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶 ∧ ∃𝑏 ∈ ℂ ((𝐶 − 4) + (𝑏↑2)) = 𝐶) → ¬ ∃!𝑎 ∈ ℂ ∃𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶))
4645imp 407 . 2 ((((𝐶 − 1) ∈ ℂ ∧ (𝐶 − 4) ∈ ℂ ∧ (𝐶 − 1) ≠ (𝐶 − 4)) ∧ (∃𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶 ∧ ∃𝑏 ∈ ℂ ((𝐶 − 4) + (𝑏↑2)) = 𝐶)) → ¬ ∃!𝑎 ∈ ℂ ∃𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶)
471, 5, 11, 20, 38, 46syl32anc 1377 1 (𝐶 ∈ ℂ → ¬ ∃!𝑎 ∈ ℂ ∃𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110  wne 2945  wrex 3067  ∃!wreu 3068  (class class class)co 7271  cc 10870  0cc0 10872  1c1 10873   + caddc 10875  cmin 11205  2c2 12028  4c4 12030  cexp 13780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-n0 12234  df-z 12320  df-uz 12582  df-seq 13720  df-exp 13781
This theorem is referenced by:  addsqn2reurex2  26591
  Copyright terms: Public domain W3C validator