MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsq2nreurex Structured version   Visualization version   GIF version

Theorem addsq2nreurex 26497
Description: For each complex number 𝐶, there is no unique complex number 𝑎 added to the square of another complex number 𝑏 resulting in the given complex number 𝐶. (Contributed by AV, 2-Jul-2023.)
Assertion
Ref Expression
addsq2nreurex (𝐶 ∈ ℂ → ¬ ∃!𝑎 ∈ ℂ ∃𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶)
Distinct variable group:   𝐶,𝑎,𝑏

Proof of Theorem addsq2nreurex
StepHypRef Expression
1 peano2cnm 11217 . 2 (𝐶 ∈ ℂ → (𝐶 − 1) ∈ ℂ)
2 id 22 . . 3 (𝐶 ∈ ℂ → 𝐶 ∈ ℂ)
3 4cn 11988 . . . 4 4 ∈ ℂ
43a1i 11 . . 3 (𝐶 ∈ ℂ → 4 ∈ ℂ)
52, 4subcld 11262 . 2 (𝐶 ∈ ℂ → (𝐶 − 4) ∈ ℂ)
6 1cnd 10901 . . 3 (𝐶 ∈ ℂ → 1 ∈ ℂ)
7 1re 10906 . . . . 5 1 ∈ ℝ
8 1lt4 12079 . . . . 5 1 < 4
97, 8ltneii 11018 . . . 4 1 ≠ 4
109a1i 11 . . 3 (𝐶 ∈ ℂ → 1 ≠ 4)
112, 6, 4, 10subneintrd 11306 . 2 (𝐶 ∈ ℂ → (𝐶 − 1) ≠ (𝐶 − 4))
12 oveq1 7262 . . . . . 6 (𝑏 = 1 → (𝑏↑2) = (1↑2))
1312oveq2d 7271 . . . . 5 (𝑏 = 1 → ((𝐶 − 1) + (𝑏↑2)) = ((𝐶 − 1) + (1↑2)))
1413eqeq1d 2740 . . . 4 (𝑏 = 1 → (((𝐶 − 1) + (𝑏↑2)) = 𝐶 ↔ ((𝐶 − 1) + (1↑2)) = 𝐶))
1514adantl 481 . . 3 ((𝐶 ∈ ℂ ∧ 𝑏 = 1) → (((𝐶 − 1) + (𝑏↑2)) = 𝐶 ↔ ((𝐶 − 1) + (1↑2)) = 𝐶))
16 sq1 13840 . . . . 5 (1↑2) = 1
1716oveq2i 7266 . . . 4 ((𝐶 − 1) + (1↑2)) = ((𝐶 − 1) + 1)
18 npcan1 11330 . . . 4 (𝐶 ∈ ℂ → ((𝐶 − 1) + 1) = 𝐶)
1917, 18syl5eq 2791 . . 3 (𝐶 ∈ ℂ → ((𝐶 − 1) + (1↑2)) = 𝐶)
206, 15, 19rspcedvd 3555 . 2 (𝐶 ∈ ℂ → ∃𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶)
21 2cnd 11981 . . 3 (𝐶 ∈ ℂ → 2 ∈ ℂ)
22 oveq1 7262 . . . . . 6 (𝑏 = 2 → (𝑏↑2) = (2↑2))
2322oveq2d 7271 . . . . 5 (𝑏 = 2 → ((𝐶 − 4) + (𝑏↑2)) = ((𝐶 − 4) + (2↑2)))
2423eqeq1d 2740 . . . 4 (𝑏 = 2 → (((𝐶 − 4) + (𝑏↑2)) = 𝐶 ↔ ((𝐶 − 4) + (2↑2)) = 𝐶))
2524adantl 481 . . 3 ((𝐶 ∈ ℂ ∧ 𝑏 = 2) → (((𝐶 − 4) + (𝑏↑2)) = 𝐶 ↔ ((𝐶 − 4) + (2↑2)) = 𝐶))
26 2cn 11978 . . . . . . 7 2 ∈ ℂ
2726sqcli 13826 . . . . . 6 (2↑2) ∈ ℂ
2827a1i 11 . . . . 5 (𝐶 ∈ ℂ → (2↑2) ∈ ℂ)
292, 4, 28subadd23d 11284 . . . 4 (𝐶 ∈ ℂ → ((𝐶 − 4) + (2↑2)) = (𝐶 + ((2↑2) − 4)))
30 sq2 13842 . . . . . . 7 (2↑2) = 4
3130a1i 11 . . . . . 6 (𝐶 ∈ ℂ → (2↑2) = 4)
3228, 31subeq0bd 11331 . . . . 5 (𝐶 ∈ ℂ → ((2↑2) − 4) = 0)
3327, 3subcli 11227 . . . . . 6 ((2↑2) − 4) ∈ ℂ
34 addid0 11324 . . . . . 6 ((𝐶 ∈ ℂ ∧ ((2↑2) − 4) ∈ ℂ) → ((𝐶 + ((2↑2) − 4)) = 𝐶 ↔ ((2↑2) − 4) = 0))
3533, 34mpan2 687 . . . . 5 (𝐶 ∈ ℂ → ((𝐶 + ((2↑2) − 4)) = 𝐶 ↔ ((2↑2) − 4) = 0))
3632, 35mpbird 256 . . . 4 (𝐶 ∈ ℂ → (𝐶 + ((2↑2) − 4)) = 𝐶)
3729, 36eqtrd 2778 . . 3 (𝐶 ∈ ℂ → ((𝐶 − 4) + (2↑2)) = 𝐶)
3821, 25, 37rspcedvd 3555 . 2 (𝐶 ∈ ℂ → ∃𝑏 ∈ ℂ ((𝐶 − 4) + (𝑏↑2)) = 𝐶)
39 oveq1 7262 . . . . . 6 (𝑎 = (𝐶 − 1) → (𝑎 + (𝑏↑2)) = ((𝐶 − 1) + (𝑏↑2)))
4039eqeq1d 2740 . . . . 5 (𝑎 = (𝐶 − 1) → ((𝑎 + (𝑏↑2)) = 𝐶 ↔ ((𝐶 − 1) + (𝑏↑2)) = 𝐶))
4140rexbidv 3225 . . . 4 (𝑎 = (𝐶 − 1) → (∃𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ∃𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶))
42 oveq1 7262 . . . . . 6 (𝑎 = (𝐶 − 4) → (𝑎 + (𝑏↑2)) = ((𝐶 − 4) + (𝑏↑2)))
4342eqeq1d 2740 . . . . 5 (𝑎 = (𝐶 − 4) → ((𝑎 + (𝑏↑2)) = 𝐶 ↔ ((𝐶 − 4) + (𝑏↑2)) = 𝐶))
4443rexbidv 3225 . . . 4 (𝑎 = (𝐶 − 4) → (∃𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ∃𝑏 ∈ ℂ ((𝐶 − 4) + (𝑏↑2)) = 𝐶))
4541, 442nreu 4372 . . 3 (((𝐶 − 1) ∈ ℂ ∧ (𝐶 − 4) ∈ ℂ ∧ (𝐶 − 1) ≠ (𝐶 − 4)) → ((∃𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶 ∧ ∃𝑏 ∈ ℂ ((𝐶 − 4) + (𝑏↑2)) = 𝐶) → ¬ ∃!𝑎 ∈ ℂ ∃𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶))
4645imp 406 . 2 ((((𝐶 − 1) ∈ ℂ ∧ (𝐶 − 4) ∈ ℂ ∧ (𝐶 − 1) ≠ (𝐶 − 4)) ∧ (∃𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶 ∧ ∃𝑏 ∈ ℂ ((𝐶 − 4) + (𝑏↑2)) = 𝐶)) → ¬ ∃!𝑎 ∈ ℂ ∃𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶)
471, 5, 11, 20, 38, 46syl32anc 1376 1 (𝐶 ∈ ℂ → ¬ ∃!𝑎 ∈ ℂ ∃𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wrex 3064  ∃!wreu 3065  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805  cmin 11135  2c2 11958  4c4 11960  cexp 13710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-n0 12164  df-z 12250  df-uz 12512  df-seq 13650  df-exp 13711
This theorem is referenced by:  addsqn2reurex2  26498
  Copyright terms: Public domain W3C validator