MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsq2nreurex Structured version   Visualization version   GIF version

Theorem addsq2nreurex 27407
Description: For each complex number 𝐶, there is no unique complex number 𝑎 added to the square of another complex number 𝑏 resulting in the given complex number 𝐶. (Contributed by AV, 2-Jul-2023.)
Assertion
Ref Expression
addsq2nreurex (𝐶 ∈ ℂ → ¬ ∃!𝑎 ∈ ℂ ∃𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶)
Distinct variable group:   𝐶,𝑎,𝑏

Proof of Theorem addsq2nreurex
StepHypRef Expression
1 peano2cnm 11549 . 2 (𝐶 ∈ ℂ → (𝐶 − 1) ∈ ℂ)
2 id 22 . . 3 (𝐶 ∈ ℂ → 𝐶 ∈ ℂ)
3 4cn 12325 . . . 4 4 ∈ ℂ
43a1i 11 . . 3 (𝐶 ∈ ℂ → 4 ∈ ℂ)
52, 4subcld 11594 . 2 (𝐶 ∈ ℂ → (𝐶 − 4) ∈ ℂ)
6 1cnd 11230 . . 3 (𝐶 ∈ ℂ → 1 ∈ ℂ)
7 1re 11235 . . . . 5 1 ∈ ℝ
8 1lt4 12416 . . . . 5 1 < 4
97, 8ltneii 11348 . . . 4 1 ≠ 4
109a1i 11 . . 3 (𝐶 ∈ ℂ → 1 ≠ 4)
112, 6, 4, 10subneintrd 11638 . 2 (𝐶 ∈ ℂ → (𝐶 − 1) ≠ (𝐶 − 4))
12 oveq1 7412 . . . . . 6 (𝑏 = 1 → (𝑏↑2) = (1↑2))
1312oveq2d 7421 . . . . 5 (𝑏 = 1 → ((𝐶 − 1) + (𝑏↑2)) = ((𝐶 − 1) + (1↑2)))
1413eqeq1d 2737 . . . 4 (𝑏 = 1 → (((𝐶 − 1) + (𝑏↑2)) = 𝐶 ↔ ((𝐶 − 1) + (1↑2)) = 𝐶))
1514adantl 481 . . 3 ((𝐶 ∈ ℂ ∧ 𝑏 = 1) → (((𝐶 − 1) + (𝑏↑2)) = 𝐶 ↔ ((𝐶 − 1) + (1↑2)) = 𝐶))
16 sq1 14213 . . . . 5 (1↑2) = 1
1716oveq2i 7416 . . . 4 ((𝐶 − 1) + (1↑2)) = ((𝐶 − 1) + 1)
18 npcan1 11662 . . . 4 (𝐶 ∈ ℂ → ((𝐶 − 1) + 1) = 𝐶)
1917, 18eqtrid 2782 . . 3 (𝐶 ∈ ℂ → ((𝐶 − 1) + (1↑2)) = 𝐶)
206, 15, 19rspcedvd 3603 . 2 (𝐶 ∈ ℂ → ∃𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶)
21 2cnd 12318 . . 3 (𝐶 ∈ ℂ → 2 ∈ ℂ)
22 oveq1 7412 . . . . . 6 (𝑏 = 2 → (𝑏↑2) = (2↑2))
2322oveq2d 7421 . . . . 5 (𝑏 = 2 → ((𝐶 − 4) + (𝑏↑2)) = ((𝐶 − 4) + (2↑2)))
2423eqeq1d 2737 . . . 4 (𝑏 = 2 → (((𝐶 − 4) + (𝑏↑2)) = 𝐶 ↔ ((𝐶 − 4) + (2↑2)) = 𝐶))
2524adantl 481 . . 3 ((𝐶 ∈ ℂ ∧ 𝑏 = 2) → (((𝐶 − 4) + (𝑏↑2)) = 𝐶 ↔ ((𝐶 − 4) + (2↑2)) = 𝐶))
26 2cn 12315 . . . . . . 7 2 ∈ ℂ
2726sqcli 14199 . . . . . 6 (2↑2) ∈ ℂ
2827a1i 11 . . . . 5 (𝐶 ∈ ℂ → (2↑2) ∈ ℂ)
292, 4, 28subadd23d 11616 . . . 4 (𝐶 ∈ ℂ → ((𝐶 − 4) + (2↑2)) = (𝐶 + ((2↑2) − 4)))
30 sq2 14215 . . . . . . 7 (2↑2) = 4
3130a1i 11 . . . . . 6 (𝐶 ∈ ℂ → (2↑2) = 4)
3228, 31subeq0bd 11663 . . . . 5 (𝐶 ∈ ℂ → ((2↑2) − 4) = 0)
3327, 3subcli 11559 . . . . . 6 ((2↑2) − 4) ∈ ℂ
34 addid0 11656 . . . . . 6 ((𝐶 ∈ ℂ ∧ ((2↑2) − 4) ∈ ℂ) → ((𝐶 + ((2↑2) − 4)) = 𝐶 ↔ ((2↑2) − 4) = 0))
3533, 34mpan2 691 . . . . 5 (𝐶 ∈ ℂ → ((𝐶 + ((2↑2) − 4)) = 𝐶 ↔ ((2↑2) − 4) = 0))
3632, 35mpbird 257 . . . 4 (𝐶 ∈ ℂ → (𝐶 + ((2↑2) − 4)) = 𝐶)
3729, 36eqtrd 2770 . . 3 (𝐶 ∈ ℂ → ((𝐶 − 4) + (2↑2)) = 𝐶)
3821, 25, 37rspcedvd 3603 . 2 (𝐶 ∈ ℂ → ∃𝑏 ∈ ℂ ((𝐶 − 4) + (𝑏↑2)) = 𝐶)
39 oveq1 7412 . . . . . 6 (𝑎 = (𝐶 − 1) → (𝑎 + (𝑏↑2)) = ((𝐶 − 1) + (𝑏↑2)))
4039eqeq1d 2737 . . . . 5 (𝑎 = (𝐶 − 1) → ((𝑎 + (𝑏↑2)) = 𝐶 ↔ ((𝐶 − 1) + (𝑏↑2)) = 𝐶))
4140rexbidv 3164 . . . 4 (𝑎 = (𝐶 − 1) → (∃𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ∃𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶))
42 oveq1 7412 . . . . . 6 (𝑎 = (𝐶 − 4) → (𝑎 + (𝑏↑2)) = ((𝐶 − 4) + (𝑏↑2)))
4342eqeq1d 2737 . . . . 5 (𝑎 = (𝐶 − 4) → ((𝑎 + (𝑏↑2)) = 𝐶 ↔ ((𝐶 − 4) + (𝑏↑2)) = 𝐶))
4443rexbidv 3164 . . . 4 (𝑎 = (𝐶 − 4) → (∃𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ∃𝑏 ∈ ℂ ((𝐶 − 4) + (𝑏↑2)) = 𝐶))
4541, 442nreu 4419 . . 3 (((𝐶 − 1) ∈ ℂ ∧ (𝐶 − 4) ∈ ℂ ∧ (𝐶 − 1) ≠ (𝐶 − 4)) → ((∃𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶 ∧ ∃𝑏 ∈ ℂ ((𝐶 − 4) + (𝑏↑2)) = 𝐶) → ¬ ∃!𝑎 ∈ ℂ ∃𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶))
4645imp 406 . 2 ((((𝐶 − 1) ∈ ℂ ∧ (𝐶 − 4) ∈ ℂ ∧ (𝐶 − 1) ≠ (𝐶 − 4)) ∧ (∃𝑏 ∈ ℂ ((𝐶 − 1) + (𝑏↑2)) = 𝐶 ∧ ∃𝑏 ∈ ℂ ((𝐶 − 4) + (𝑏↑2)) = 𝐶)) → ¬ ∃!𝑎 ∈ ℂ ∃𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶)
471, 5, 11, 20, 38, 46syl32anc 1380 1 (𝐶 ∈ ℂ → ¬ ∃!𝑎 ∈ ℂ ∃𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wrex 3060  ∃!wreu 3357  (class class class)co 7405  cc 11127  0cc0 11129  1c1 11130   + caddc 11132  cmin 11466  2c2 12295  4c4 12297  cexp 14079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-n0 12502  df-z 12589  df-uz 12853  df-seq 14020  df-exp 14080
This theorem is referenced by:  addsqn2reurex2  27408
  Copyright terms: Public domain W3C validator