MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subaddd Structured version   Visualization version   GIF version

Theorem subaddd 11490
Description: Relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
negidd.1 (𝜑𝐴 ∈ ℂ)
pncand.2 (𝜑𝐵 ∈ ℂ)
subaddd.3 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
subaddd (𝜑 → ((𝐴𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴))

Proof of Theorem subaddd
StepHypRef Expression
1 negidd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 pncand.2 . 2 (𝜑𝐵 ∈ ℂ)
3 subaddd.3 . 2 (𝜑𝐶 ∈ ℂ)
4 subadd 11363 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴))
51, 2, 3, 4syl3anc 1373 1 (𝜑 → ((𝐴𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  (class class class)co 7346  cc 11004   + caddc 11009  cmin 11344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-ltxr 11151  df-sub 11346
This theorem is referenced by:  addid0  11536  subdi  11550  zneo  12556  flpmodeq  13778  bpolysum  15960  phiprmpw  16687  fldivp1  16809  pcfac  16811  sylow2a  19531  aaliou3lem7  26284  quad2  26776  dcubic  26783  quart  26798  efiatan2  26854  dmgmaddn0  26960  lgamgulmlem3  26968  m1lgs  27326  addsq2reu  27378  addsqrexnreu  27380  logdivbnd  27494  axeuclidlem  28940  constrrtcclem  33747  ballotlemic  34520  signslema  34575  signsvtn  34597  subfaclim  35232  mblfinlem3  37707  mblfinlem4  37708  aks6d1c2  42171  sticksstones12  42199  pell1qrge1  42911  rmxluc  42977  itgsinexp  46001  fourierdlem19  46172  fourierdlem35  46188  fourierdlem41  46194  fourierdlem51  46203  fourierdlem79  46231  meaiininclem  46532  nnpw2pmod  48623  eenglngeehlnmlem1  48777  eenglngeehlnmlem2  48778  itsclinecirc0b  48814
  Copyright terms: Public domain W3C validator