MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsp1 Structured version   Visualization version   GIF version

Theorem bitsp1 15559
Description: The 𝑀 + 1-th bit of 𝑁 is the 𝑀-th bit of ⌊(𝑁 / 2). (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bitsp1 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘𝑁) ↔ 𝑀 ∈ (bits‘(⌊‘(𝑁 / 2)))))

Proof of Theorem bitsp1
StepHypRef Expression
1 2nn 11448 . . . . . . . . . . . 12 2 ∈ ℕ
21a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 2 ∈ ℕ)
32nncnd 11392 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 2 ∈ ℂ)
4 simpr 479 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝑀 ∈ ℕ0)
53, 4expp1d 13328 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑(𝑀 + 1)) = ((2↑𝑀) · 2))
62, 4nnexpcld 13351 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑𝑀) ∈ ℕ)
76nncnd 11392 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑𝑀) ∈ ℂ)
87, 3mulcomd 10398 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((2↑𝑀) · 2) = (2 · (2↑𝑀)))
95, 8eqtrd 2814 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑(𝑀 + 1)) = (2 · (2↑𝑀)))
109oveq2d 6938 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 / (2↑(𝑀 + 1))) = (𝑁 / (2 · (2↑𝑀))))
11 simpl 476 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝑁 ∈ ℤ)
1211zcnd 11835 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝑁 ∈ ℂ)
132nnne0d 11425 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 2 ≠ 0)
146nnne0d 11425 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑𝑀) ≠ 0)
1512, 3, 7, 13, 14divdiv1d 11182 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑁 / 2) / (2↑𝑀)) = (𝑁 / (2 · (2↑𝑀))))
1610, 15eqtr4d 2817 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 / (2↑(𝑀 + 1))) = ((𝑁 / 2) / (2↑𝑀)))
1716fveq2d 6450 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (⌊‘(𝑁 / (2↑(𝑀 + 1)))) = (⌊‘((𝑁 / 2) / (2↑𝑀))))
1811zred 11834 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝑁 ∈ ℝ)
1918rehalfcld 11629 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 / 2) ∈ ℝ)
20 fldiv 12978 . . . . . 6 (((𝑁 / 2) ∈ ℝ ∧ (2↑𝑀) ∈ ℕ) → (⌊‘((⌊‘(𝑁 / 2)) / (2↑𝑀))) = (⌊‘((𝑁 / 2) / (2↑𝑀))))
2119, 6, 20syl2anc 579 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (⌊‘((⌊‘(𝑁 / 2)) / (2↑𝑀))) = (⌊‘((𝑁 / 2) / (2↑𝑀))))
2217, 21eqtr4d 2817 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (⌊‘(𝑁 / (2↑(𝑀 + 1)))) = (⌊‘((⌊‘(𝑁 / 2)) / (2↑𝑀))))
2322breq2d 4898 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2 ∥ (⌊‘(𝑁 / (2↑(𝑀 + 1)))) ↔ 2 ∥ (⌊‘((⌊‘(𝑁 / 2)) / (2↑𝑀)))))
2423notbid 310 . 2 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (¬ 2 ∥ (⌊‘(𝑁 / (2↑(𝑀 + 1)))) ↔ ¬ 2 ∥ (⌊‘((⌊‘(𝑁 / 2)) / (2↑𝑀)))))
25 peano2nn0 11684 . . 3 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ0)
26 bitsval2 15553 . . 3 ((𝑁 ∈ ℤ ∧ (𝑀 + 1) ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑(𝑀 + 1))))))
2725, 26sylan2 586 . 2 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑(𝑀 + 1))))))
2819flcld 12918 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (⌊‘(𝑁 / 2)) ∈ ℤ)
29 bitsval2 15553 . . 3 (((⌊‘(𝑁 / 2)) ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑀 ∈ (bits‘(⌊‘(𝑁 / 2))) ↔ ¬ 2 ∥ (⌊‘((⌊‘(𝑁 / 2)) / (2↑𝑀)))))
3028, 29sylancom 582 . 2 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑀 ∈ (bits‘(⌊‘(𝑁 / 2))) ↔ ¬ 2 ∥ (⌊‘((⌊‘(𝑁 / 2)) / (2↑𝑀)))))
3124, 27, 303bitr4d 303 1 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘𝑁) ↔ 𝑀 ∈ (bits‘(⌊‘(𝑁 / 2)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386   = wceq 1601  wcel 2107   class class class wbr 4886  cfv 6135  (class class class)co 6922  cr 10271  1c1 10273   + caddc 10275   · cmul 10277   / cdiv 11032  cn 11374  2c2 11430  0cn0 11642  cz 11728  cfl 12910  cexp 13178  cdvds 15387  bitscbits 15547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-sup 8636  df-inf 8637  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-n0 11643  df-z 11729  df-uz 11993  df-fl 12912  df-seq 13120  df-exp 13179  df-bits 15550
This theorem is referenced by:  bitsp1e  15560  bitsp1o  15561
  Copyright terms: Public domain W3C validator