![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bitsp1 | Structured version Visualization version GIF version |
Description: The 𝑀 + 1-th bit of 𝑁 is the 𝑀-th bit of ⌊(𝑁 / 2). (Contributed by Mario Carneiro, 5-Sep-2016.) |
Ref | Expression |
---|---|
bitsp1 | ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘𝑁) ↔ 𝑀 ∈ (bits‘(⌊‘(𝑁 / 2))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn 12336 | . . . . . . . . . . . 12 ⊢ 2 ∈ ℕ | |
2 | 1 | a1i 11 | . . . . . . . . . . 11 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 2 ∈ ℕ) |
3 | 2 | nncnd 12279 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 2 ∈ ℂ) |
4 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝑀 ∈ ℕ0) | |
5 | 3, 4 | expp1d 14183 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑(𝑀 + 1)) = ((2↑𝑀) · 2)) |
6 | 2, 4 | nnexpcld 14280 | . . . . . . . . . . 11 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑𝑀) ∈ ℕ) |
7 | 6 | nncnd 12279 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑𝑀) ∈ ℂ) |
8 | 7, 3 | mulcomd 11279 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((2↑𝑀) · 2) = (2 · (2↑𝑀))) |
9 | 5, 8 | eqtrd 2774 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑(𝑀 + 1)) = (2 · (2↑𝑀))) |
10 | 9 | oveq2d 7446 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 / (2↑(𝑀 + 1))) = (𝑁 / (2 · (2↑𝑀)))) |
11 | simpl 482 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝑁 ∈ ℤ) | |
12 | 11 | zcnd 12720 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝑁 ∈ ℂ) |
13 | 2 | nnne0d 12313 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 2 ≠ 0) |
14 | 6 | nnne0d 12313 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑𝑀) ≠ 0) |
15 | 12, 3, 7, 13, 14 | divdiv1d 12071 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑁 / 2) / (2↑𝑀)) = (𝑁 / (2 · (2↑𝑀)))) |
16 | 10, 15 | eqtr4d 2777 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 / (2↑(𝑀 + 1))) = ((𝑁 / 2) / (2↑𝑀))) |
17 | 16 | fveq2d 6910 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (⌊‘(𝑁 / (2↑(𝑀 + 1)))) = (⌊‘((𝑁 / 2) / (2↑𝑀)))) |
18 | 11 | zred 12719 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝑁 ∈ ℝ) |
19 | 18 | rehalfcld 12510 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 / 2) ∈ ℝ) |
20 | fldiv 13896 | . . . . . 6 ⊢ (((𝑁 / 2) ∈ ℝ ∧ (2↑𝑀) ∈ ℕ) → (⌊‘((⌊‘(𝑁 / 2)) / (2↑𝑀))) = (⌊‘((𝑁 / 2) / (2↑𝑀)))) | |
21 | 19, 6, 20 | syl2anc 584 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (⌊‘((⌊‘(𝑁 / 2)) / (2↑𝑀))) = (⌊‘((𝑁 / 2) / (2↑𝑀)))) |
22 | 17, 21 | eqtr4d 2777 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (⌊‘(𝑁 / (2↑(𝑀 + 1)))) = (⌊‘((⌊‘(𝑁 / 2)) / (2↑𝑀)))) |
23 | 22 | breq2d 5159 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2 ∥ (⌊‘(𝑁 / (2↑(𝑀 + 1)))) ↔ 2 ∥ (⌊‘((⌊‘(𝑁 / 2)) / (2↑𝑀))))) |
24 | 23 | notbid 318 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (¬ 2 ∥ (⌊‘(𝑁 / (2↑(𝑀 + 1)))) ↔ ¬ 2 ∥ (⌊‘((⌊‘(𝑁 / 2)) / (2↑𝑀))))) |
25 | peano2nn0 12563 | . . 3 ⊢ (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ0) | |
26 | bitsval2 16458 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ (𝑀 + 1) ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑(𝑀 + 1)))))) | |
27 | 25, 26 | sylan2 593 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑(𝑀 + 1)))))) |
28 | 19 | flcld 13834 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (⌊‘(𝑁 / 2)) ∈ ℤ) |
29 | bitsval2 16458 | . . 3 ⊢ (((⌊‘(𝑁 / 2)) ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑀 ∈ (bits‘(⌊‘(𝑁 / 2))) ↔ ¬ 2 ∥ (⌊‘((⌊‘(𝑁 / 2)) / (2↑𝑀))))) | |
30 | 28, 29 | sylancom 588 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑀 ∈ (bits‘(⌊‘(𝑁 / 2))) ↔ ¬ 2 ∥ (⌊‘((⌊‘(𝑁 / 2)) / (2↑𝑀))))) |
31 | 24, 27, 30 | 3bitr4d 311 | 1 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘𝑁) ↔ 𝑀 ∈ (bits‘(⌊‘(𝑁 / 2))))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 class class class wbr 5147 ‘cfv 6562 (class class class)co 7430 ℝcr 11151 1c1 11153 + caddc 11155 · cmul 11157 / cdiv 11917 ℕcn 12263 2c2 12318 ℕ0cn0 12523 ℤcz 12610 ⌊cfl 13826 ↑cexp 14098 ∥ cdvds 16286 bitscbits 16452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-sup 9479 df-inf 9480 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-n0 12524 df-z 12611 df-uz 12876 df-fl 13828 df-seq 14039 df-exp 14099 df-bits 16455 |
This theorem is referenced by: bitsp1e 16465 bitsp1o 16466 |
Copyright terms: Public domain | W3C validator |