Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bitsp1 | Structured version Visualization version GIF version |
Description: The 𝑀 + 1-th bit of 𝑁 is the 𝑀-th bit of ⌊(𝑁 / 2). (Contributed by Mario Carneiro, 5-Sep-2016.) |
Ref | Expression |
---|---|
bitsp1 | ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘𝑁) ↔ 𝑀 ∈ (bits‘(⌊‘(𝑁 / 2))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn 11976 | . . . . . . . . . . . 12 ⊢ 2 ∈ ℕ | |
2 | 1 | a1i 11 | . . . . . . . . . . 11 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 2 ∈ ℕ) |
3 | 2 | nncnd 11919 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 2 ∈ ℂ) |
4 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝑀 ∈ ℕ0) | |
5 | 3, 4 | expp1d 13793 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑(𝑀 + 1)) = ((2↑𝑀) · 2)) |
6 | 2, 4 | nnexpcld 13888 | . . . . . . . . . . 11 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑𝑀) ∈ ℕ) |
7 | 6 | nncnd 11919 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑𝑀) ∈ ℂ) |
8 | 7, 3 | mulcomd 10927 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((2↑𝑀) · 2) = (2 · (2↑𝑀))) |
9 | 5, 8 | eqtrd 2778 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑(𝑀 + 1)) = (2 · (2↑𝑀))) |
10 | 9 | oveq2d 7271 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 / (2↑(𝑀 + 1))) = (𝑁 / (2 · (2↑𝑀)))) |
11 | simpl 482 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝑁 ∈ ℤ) | |
12 | 11 | zcnd 12356 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝑁 ∈ ℂ) |
13 | 2 | nnne0d 11953 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 2 ≠ 0) |
14 | 6 | nnne0d 11953 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑𝑀) ≠ 0) |
15 | 12, 3, 7, 13, 14 | divdiv1d 11712 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑁 / 2) / (2↑𝑀)) = (𝑁 / (2 · (2↑𝑀)))) |
16 | 10, 15 | eqtr4d 2781 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 / (2↑(𝑀 + 1))) = ((𝑁 / 2) / (2↑𝑀))) |
17 | 16 | fveq2d 6760 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (⌊‘(𝑁 / (2↑(𝑀 + 1)))) = (⌊‘((𝑁 / 2) / (2↑𝑀)))) |
18 | 11 | zred 12355 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝑁 ∈ ℝ) |
19 | 18 | rehalfcld 12150 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 / 2) ∈ ℝ) |
20 | fldiv 13508 | . . . . . 6 ⊢ (((𝑁 / 2) ∈ ℝ ∧ (2↑𝑀) ∈ ℕ) → (⌊‘((⌊‘(𝑁 / 2)) / (2↑𝑀))) = (⌊‘((𝑁 / 2) / (2↑𝑀)))) | |
21 | 19, 6, 20 | syl2anc 583 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (⌊‘((⌊‘(𝑁 / 2)) / (2↑𝑀))) = (⌊‘((𝑁 / 2) / (2↑𝑀)))) |
22 | 17, 21 | eqtr4d 2781 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (⌊‘(𝑁 / (2↑(𝑀 + 1)))) = (⌊‘((⌊‘(𝑁 / 2)) / (2↑𝑀)))) |
23 | 22 | breq2d 5082 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2 ∥ (⌊‘(𝑁 / (2↑(𝑀 + 1)))) ↔ 2 ∥ (⌊‘((⌊‘(𝑁 / 2)) / (2↑𝑀))))) |
24 | 23 | notbid 317 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (¬ 2 ∥ (⌊‘(𝑁 / (2↑(𝑀 + 1)))) ↔ ¬ 2 ∥ (⌊‘((⌊‘(𝑁 / 2)) / (2↑𝑀))))) |
25 | peano2nn0 12203 | . . 3 ⊢ (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ0) | |
26 | bitsval2 16060 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ (𝑀 + 1) ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑(𝑀 + 1)))))) | |
27 | 25, 26 | sylan2 592 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑(𝑀 + 1)))))) |
28 | 19 | flcld 13446 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (⌊‘(𝑁 / 2)) ∈ ℤ) |
29 | bitsval2 16060 | . . 3 ⊢ (((⌊‘(𝑁 / 2)) ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑀 ∈ (bits‘(⌊‘(𝑁 / 2))) ↔ ¬ 2 ∥ (⌊‘((⌊‘(𝑁 / 2)) / (2↑𝑀))))) | |
30 | 28, 29 | sylancom 587 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑀 ∈ (bits‘(⌊‘(𝑁 / 2))) ↔ ¬ 2 ∥ (⌊‘((⌊‘(𝑁 / 2)) / (2↑𝑀))))) |
31 | 24, 27, 30 | 3bitr4d 310 | 1 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘𝑁) ↔ 𝑀 ∈ (bits‘(⌊‘(𝑁 / 2))))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 1c1 10803 + caddc 10805 · cmul 10807 / cdiv 11562 ℕcn 11903 2c2 11958 ℕ0cn0 12163 ℤcz 12249 ⌊cfl 13438 ↑cexp 13710 ∥ cdvds 15891 bitscbits 16054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-fl 13440 df-seq 13650 df-exp 13711 df-bits 16057 |
This theorem is referenced by: bitsp1e 16067 bitsp1o 16068 |
Copyright terms: Public domain | W3C validator |