| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bitsp1 | Structured version Visualization version GIF version | ||
| Description: The 𝑀 + 1-th bit of 𝑁 is the 𝑀-th bit of ⌊(𝑁 / 2). (Contributed by Mario Carneiro, 5-Sep-2016.) |
| Ref | Expression |
|---|---|
| bitsp1 | ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘𝑁) ↔ 𝑀 ∈ (bits‘(⌊‘(𝑁 / 2))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn 12313 | . . . . . . . . . . . 12 ⊢ 2 ∈ ℕ | |
| 2 | 1 | a1i 11 | . . . . . . . . . . 11 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 2 ∈ ℕ) |
| 3 | 2 | nncnd 12256 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 2 ∈ ℂ) |
| 4 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝑀 ∈ ℕ0) | |
| 5 | 3, 4 | expp1d 14165 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑(𝑀 + 1)) = ((2↑𝑀) · 2)) |
| 6 | 2, 4 | nnexpcld 14263 | . . . . . . . . . . 11 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑𝑀) ∈ ℕ) |
| 7 | 6 | nncnd 12256 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑𝑀) ∈ ℂ) |
| 8 | 7, 3 | mulcomd 11256 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((2↑𝑀) · 2) = (2 · (2↑𝑀))) |
| 9 | 5, 8 | eqtrd 2770 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑(𝑀 + 1)) = (2 · (2↑𝑀))) |
| 10 | 9 | oveq2d 7421 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 / (2↑(𝑀 + 1))) = (𝑁 / (2 · (2↑𝑀)))) |
| 11 | simpl 482 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝑁 ∈ ℤ) | |
| 12 | 11 | zcnd 12698 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝑁 ∈ ℂ) |
| 13 | 2 | nnne0d 12290 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 2 ≠ 0) |
| 14 | 6 | nnne0d 12290 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑𝑀) ≠ 0) |
| 15 | 12, 3, 7, 13, 14 | divdiv1d 12048 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑁 / 2) / (2↑𝑀)) = (𝑁 / (2 · (2↑𝑀)))) |
| 16 | 10, 15 | eqtr4d 2773 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 / (2↑(𝑀 + 1))) = ((𝑁 / 2) / (2↑𝑀))) |
| 17 | 16 | fveq2d 6880 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (⌊‘(𝑁 / (2↑(𝑀 + 1)))) = (⌊‘((𝑁 / 2) / (2↑𝑀)))) |
| 18 | 11 | zred 12697 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝑁 ∈ ℝ) |
| 19 | 18 | rehalfcld 12488 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 / 2) ∈ ℝ) |
| 20 | fldiv 13877 | . . . . . 6 ⊢ (((𝑁 / 2) ∈ ℝ ∧ (2↑𝑀) ∈ ℕ) → (⌊‘((⌊‘(𝑁 / 2)) / (2↑𝑀))) = (⌊‘((𝑁 / 2) / (2↑𝑀)))) | |
| 21 | 19, 6, 20 | syl2anc 584 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (⌊‘((⌊‘(𝑁 / 2)) / (2↑𝑀))) = (⌊‘((𝑁 / 2) / (2↑𝑀)))) |
| 22 | 17, 21 | eqtr4d 2773 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (⌊‘(𝑁 / (2↑(𝑀 + 1)))) = (⌊‘((⌊‘(𝑁 / 2)) / (2↑𝑀)))) |
| 23 | 22 | breq2d 5131 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2 ∥ (⌊‘(𝑁 / (2↑(𝑀 + 1)))) ↔ 2 ∥ (⌊‘((⌊‘(𝑁 / 2)) / (2↑𝑀))))) |
| 24 | 23 | notbid 318 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (¬ 2 ∥ (⌊‘(𝑁 / (2↑(𝑀 + 1)))) ↔ ¬ 2 ∥ (⌊‘((⌊‘(𝑁 / 2)) / (2↑𝑀))))) |
| 25 | peano2nn0 12541 | . . 3 ⊢ (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ0) | |
| 26 | bitsval2 16444 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ (𝑀 + 1) ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑(𝑀 + 1)))))) | |
| 27 | 25, 26 | sylan2 593 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑(𝑀 + 1)))))) |
| 28 | 19 | flcld 13815 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (⌊‘(𝑁 / 2)) ∈ ℤ) |
| 29 | bitsval2 16444 | . . 3 ⊢ (((⌊‘(𝑁 / 2)) ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑀 ∈ (bits‘(⌊‘(𝑁 / 2))) ↔ ¬ 2 ∥ (⌊‘((⌊‘(𝑁 / 2)) / (2↑𝑀))))) | |
| 30 | 28, 29 | sylancom 588 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑀 ∈ (bits‘(⌊‘(𝑁 / 2))) ↔ ¬ 2 ∥ (⌊‘((⌊‘(𝑁 / 2)) / (2↑𝑀))))) |
| 31 | 24, 27, 30 | 3bitr4d 311 | 1 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘𝑁) ↔ 𝑀 ∈ (bits‘(⌊‘(𝑁 / 2))))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 ℝcr 11128 1c1 11130 + caddc 11132 · cmul 11134 / cdiv 11894 ℕcn 12240 2c2 12295 ℕ0cn0 12501 ℤcz 12588 ⌊cfl 13807 ↑cexp 14079 ∥ cdvds 16272 bitscbits 16438 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-n0 12502 df-z 12589 df-uz 12853 df-fl 13809 df-seq 14020 df-exp 14080 df-bits 16441 |
| This theorem is referenced by: bitsp1e 16451 bitsp1o 16452 |
| Copyright terms: Public domain | W3C validator |