![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dig2bits | Structured version Visualization version GIF version |
Description: The 𝐾 th digit of a nonnegative integer 𝑁 in a binary system is its 𝐾 th bit. (Contributed by AV, 24-May-2020.) |
Ref | Expression |
---|---|
dig2bits | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → ((𝐾(digit‘2)𝑁) = 1 ↔ 𝐾 ∈ (bits‘𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re 12542 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈ ℝ) |
3 | 2re 12347 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
4 | 3 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℝ) |
5 | reexpcl 14125 | . . . . . 6 ⊢ ((2 ∈ ℝ ∧ 𝐾 ∈ ℕ0) → (2↑𝐾) ∈ ℝ) | |
6 | 4, 5 | sylan 580 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → (2↑𝐾) ∈ ℝ) |
7 | 2cnd 12351 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → 2 ∈ ℂ) | |
8 | 2ne0 12377 | . . . . . . 7 ⊢ 2 ≠ 0 | |
9 | 8 | a1i 11 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → 2 ≠ 0) |
10 | nn0z 12645 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ0 → 𝐾 ∈ ℤ) | |
11 | 10 | adantl 481 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℤ) |
12 | 7, 9, 11 | expne0d 14198 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → (2↑𝐾) ≠ 0) |
13 | 2, 6, 12 | redivcld 12102 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → (𝑁 / (2↑𝐾)) ∈ ℝ) |
14 | 13 | flcld 13844 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → (⌊‘(𝑁 / (2↑𝐾))) ∈ ℤ) |
15 | mod2eq1n2dvds 16390 | . . 3 ⊢ ((⌊‘(𝑁 / (2↑𝐾))) ∈ ℤ → (((⌊‘(𝑁 / (2↑𝐾))) mod 2) = 1 ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝐾))))) | |
16 | 14, 15 | syl 17 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → (((⌊‘(𝑁 / (2↑𝐾))) mod 2) = 1 ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝐾))))) |
17 | 2nn 12346 | . . . . 5 ⊢ 2 ∈ ℕ | |
18 | 17 | a1i 11 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → 2 ∈ ℕ) |
19 | simpr 484 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0) | |
20 | nn0rp0 13501 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (0[,)+∞)) | |
21 | 20 | adantr 480 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈ (0[,)+∞)) |
22 | nn0digval 48488 | . . . 4 ⊢ ((2 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ (0[,)+∞)) → (𝐾(digit‘2)𝑁) = ((⌊‘(𝑁 / (2↑𝐾))) mod 2)) | |
23 | 18, 19, 21, 22 | syl3anc 1372 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → (𝐾(digit‘2)𝑁) = ((⌊‘(𝑁 / (2↑𝐾))) mod 2)) |
24 | 23 | eqeq1d 2739 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → ((𝐾(digit‘2)𝑁) = 1 ↔ ((⌊‘(𝑁 / (2↑𝐾))) mod 2) = 1)) |
25 | nn0z 12645 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
26 | bitsval2 16468 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ0) → (𝐾 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝐾))))) | |
27 | 25, 26 | sylan 580 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → (𝐾 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝐾))))) |
28 | 16, 24, 27 | 3bitr4d 311 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → ((𝐾(digit‘2)𝑁) = 1 ↔ 𝐾 ∈ (bits‘𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2940 class class class wbr 5151 ‘cfv 6569 (class class class)co 7438 ℝcr 11161 0cc0 11162 1c1 11163 +∞cpnf 11299 / cdiv 11927 ℕcn 12273 2c2 12328 ℕ0cn0 12533 ℤcz 12620 [,)cico 13395 ⌊cfl 13836 mod cmo 13915 ↑cexp 14108 ∥ cdvds 16296 bitscbits 16462 digitcdig 48483 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 ax-pre-sup 11240 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 df-sup 9489 df-inf 9490 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-div 11928 df-nn 12274 df-2 12336 df-n0 12534 df-z 12621 df-uz 12886 df-rp 13042 df-ico 13399 df-fl 13838 df-mod 13916 df-seq 14049 df-exp 14109 df-dvds 16297 df-bits 16465 df-dig 48484 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |