![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dig2bits | Structured version Visualization version GIF version |
Description: The 𝐾 th digit of a nonnegative integer 𝑁 in a binary system is its 𝐾 th bit. (Contributed by AV, 24-May-2020.) |
Ref | Expression |
---|---|
dig2bits | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → ((𝐾(digit‘2)𝑁) = 1 ↔ 𝐾 ∈ (bits‘𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re 12488 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈ ℝ) |
3 | 2re 12293 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
4 | 3 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℝ) |
5 | reexpcl 14051 | . . . . . 6 ⊢ ((2 ∈ ℝ ∧ 𝐾 ∈ ℕ0) → (2↑𝐾) ∈ ℝ) | |
6 | 4, 5 | sylan 579 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → (2↑𝐾) ∈ ℝ) |
7 | 2cnd 12297 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → 2 ∈ ℂ) | |
8 | 2ne0 12323 | . . . . . . 7 ⊢ 2 ≠ 0 | |
9 | 8 | a1i 11 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → 2 ≠ 0) |
10 | nn0z 12590 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ0 → 𝐾 ∈ ℤ) | |
11 | 10 | adantl 481 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℤ) |
12 | 7, 9, 11 | expne0d 14124 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → (2↑𝐾) ≠ 0) |
13 | 2, 6, 12 | redivcld 12049 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → (𝑁 / (2↑𝐾)) ∈ ℝ) |
14 | 13 | flcld 13770 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → (⌊‘(𝑁 / (2↑𝐾))) ∈ ℤ) |
15 | mod2eq1n2dvds 16297 | . . 3 ⊢ ((⌊‘(𝑁 / (2↑𝐾))) ∈ ℤ → (((⌊‘(𝑁 / (2↑𝐾))) mod 2) = 1 ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝐾))))) | |
16 | 14, 15 | syl 17 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → (((⌊‘(𝑁 / (2↑𝐾))) mod 2) = 1 ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝐾))))) |
17 | 2nn 12292 | . . . . 5 ⊢ 2 ∈ ℕ | |
18 | 17 | a1i 11 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → 2 ∈ ℕ) |
19 | simpr 484 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0) | |
20 | nn0rp0 13439 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (0[,)+∞)) | |
21 | 20 | adantr 480 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈ (0[,)+∞)) |
22 | nn0digval 47448 | . . . 4 ⊢ ((2 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ (0[,)+∞)) → (𝐾(digit‘2)𝑁) = ((⌊‘(𝑁 / (2↑𝐾))) mod 2)) | |
23 | 18, 19, 21, 22 | syl3anc 1370 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → (𝐾(digit‘2)𝑁) = ((⌊‘(𝑁 / (2↑𝐾))) mod 2)) |
24 | 23 | eqeq1d 2733 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → ((𝐾(digit‘2)𝑁) = 1 ↔ ((⌊‘(𝑁 / (2↑𝐾))) mod 2) = 1)) |
25 | nn0z 12590 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
26 | bitsval2 16373 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ0) → (𝐾 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝐾))))) | |
27 | 25, 26 | sylan 579 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → (𝐾 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝐾))))) |
28 | 16, 24, 27 | 3bitr4d 311 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → ((𝐾(digit‘2)𝑁) = 1 ↔ 𝐾 ∈ (bits‘𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 class class class wbr 5148 ‘cfv 6543 (class class class)co 7412 ℝcr 11115 0cc0 11116 1c1 11117 +∞cpnf 11252 / cdiv 11878 ℕcn 12219 2c2 12274 ℕ0cn0 12479 ℤcz 12565 [,)cico 13333 ⌊cfl 13762 mod cmo 13841 ↑cexp 14034 ∥ cdvds 16204 bitscbits 16367 digitcdig 47443 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-sup 9443 df-inf 9444 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-n0 12480 df-z 12566 df-uz 12830 df-rp 12982 df-ico 13337 df-fl 13764 df-mod 13842 df-seq 13974 df-exp 14035 df-dvds 16205 df-bits 16370 df-dig 47444 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |