Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dig2bits Structured version   Visualization version   GIF version

Theorem dig2bits 48502
Description: The 𝐾 th digit of a nonnegative integer 𝑁 in a binary system is its 𝐾 th bit. (Contributed by AV, 24-May-2020.)
Assertion
Ref Expression
dig2bits ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0) → ((𝐾(digit‘2)𝑁) = 1 ↔ 𝐾 ∈ (bits‘𝑁)))

Proof of Theorem dig2bits
StepHypRef Expression
1 nn0re 12542 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
21adantr 480 . . . . 5 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0) → 𝑁 ∈ ℝ)
3 2re 12347 . . . . . . 7 2 ∈ ℝ
43a1i 11 . . . . . 6 (𝑁 ∈ ℕ0 → 2 ∈ ℝ)
5 reexpcl 14125 . . . . . 6 ((2 ∈ ℝ ∧ 𝐾 ∈ ℕ0) → (2↑𝐾) ∈ ℝ)
64, 5sylan 580 . . . . 5 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0) → (2↑𝐾) ∈ ℝ)
7 2cnd 12351 . . . . . 6 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0) → 2 ∈ ℂ)
8 2ne0 12377 . . . . . . 7 2 ≠ 0
98a1i 11 . . . . . 6 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0) → 2 ≠ 0)
10 nn0z 12645 . . . . . . 7 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
1110adantl 481 . . . . . 6 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0) → 𝐾 ∈ ℤ)
127, 9, 11expne0d 14198 . . . . 5 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0) → (2↑𝐾) ≠ 0)
132, 6, 12redivcld 12102 . . . 4 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑁 / (2↑𝐾)) ∈ ℝ)
1413flcld 13844 . . 3 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0) → (⌊‘(𝑁 / (2↑𝐾))) ∈ ℤ)
15 mod2eq1n2dvds 16390 . . 3 ((⌊‘(𝑁 / (2↑𝐾))) ∈ ℤ → (((⌊‘(𝑁 / (2↑𝐾))) mod 2) = 1 ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝐾)))))
1614, 15syl 17 . 2 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0) → (((⌊‘(𝑁 / (2↑𝐾))) mod 2) = 1 ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝐾)))))
17 2nn 12346 . . . . 5 2 ∈ ℕ
1817a1i 11 . . . 4 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0) → 2 ∈ ℕ)
19 simpr 484 . . . 4 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0)
20 nn0rp0 13501 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ (0[,)+∞))
2120adantr 480 . . . 4 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0) → 𝑁 ∈ (0[,)+∞))
22 nn0digval 48488 . . . 4 ((2 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑁 ∈ (0[,)+∞)) → (𝐾(digit‘2)𝑁) = ((⌊‘(𝑁 / (2↑𝐾))) mod 2))
2318, 19, 21, 22syl3anc 1372 . . 3 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0) → (𝐾(digit‘2)𝑁) = ((⌊‘(𝑁 / (2↑𝐾))) mod 2))
2423eqeq1d 2739 . 2 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0) → ((𝐾(digit‘2)𝑁) = 1 ↔ ((⌊‘(𝑁 / (2↑𝐾))) mod 2) = 1))
25 nn0z 12645 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
26 bitsval2 16468 . . 3 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ0) → (𝐾 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝐾)))))
2725, 26sylan 580 . 2 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0) → (𝐾 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝐾)))))
2816, 24, 273bitr4d 311 1 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0) → ((𝐾(digit‘2)𝑁) = 1 ↔ 𝐾 ∈ (bits‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wcel 2108  wne 2940   class class class wbr 5151  cfv 6569  (class class class)co 7438  cr 11161  0cc0 11162  1c1 11163  +∞cpnf 11299   / cdiv 11927  cn 12273  2c2 12328  0cn0 12533  cz 12620  [,)cico 13395  cfl 13836   mod cmo 13915  cexp 14108  cdvds 16296  bitscbits 16462  digitcdig 48483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239  ax-pre-sup 11240
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-1st 8022  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-er 8753  df-en 8994  df-dom 8995  df-sdom 8996  df-sup 9489  df-inf 9490  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-div 11928  df-nn 12274  df-2 12336  df-n0 12534  df-z 12621  df-uz 12886  df-rp 13042  df-ico 13399  df-fl 13838  df-mod 13916  df-seq 14049  df-exp 14109  df-dvds 16297  df-bits 16465  df-dig 48484
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator