| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dig2bits | Structured version Visualization version GIF version | ||
| Description: The 𝐾 th digit of a nonnegative integer 𝑁 in a binary system is its 𝐾 th bit. (Contributed by AV, 24-May-2020.) |
| Ref | Expression |
|---|---|
| dig2bits | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → ((𝐾(digit‘2)𝑁) = 1 ↔ 𝐾 ∈ (bits‘𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re 12517 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
| 2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈ ℝ) |
| 3 | 2re 12321 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
| 4 | 3 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℝ) |
| 5 | reexpcl 14100 | . . . . . 6 ⊢ ((2 ∈ ℝ ∧ 𝐾 ∈ ℕ0) → (2↑𝐾) ∈ ℝ) | |
| 6 | 4, 5 | sylan 580 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → (2↑𝐾) ∈ ℝ) |
| 7 | 2cnd 12325 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → 2 ∈ ℂ) | |
| 8 | 2ne0 12351 | . . . . . . 7 ⊢ 2 ≠ 0 | |
| 9 | 8 | a1i 11 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → 2 ≠ 0) |
| 10 | nn0z 12620 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ0 → 𝐾 ∈ ℤ) | |
| 11 | 10 | adantl 481 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℤ) |
| 12 | 7, 9, 11 | expne0d 14173 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → (2↑𝐾) ≠ 0) |
| 13 | 2, 6, 12 | redivcld 12076 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → (𝑁 / (2↑𝐾)) ∈ ℝ) |
| 14 | 13 | flcld 13819 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → (⌊‘(𝑁 / (2↑𝐾))) ∈ ℤ) |
| 15 | mod2eq1n2dvds 16365 | . . 3 ⊢ ((⌊‘(𝑁 / (2↑𝐾))) ∈ ℤ → (((⌊‘(𝑁 / (2↑𝐾))) mod 2) = 1 ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝐾))))) | |
| 16 | 14, 15 | syl 17 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → (((⌊‘(𝑁 / (2↑𝐾))) mod 2) = 1 ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝐾))))) |
| 17 | 2nn 12320 | . . . . 5 ⊢ 2 ∈ ℕ | |
| 18 | 17 | a1i 11 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → 2 ∈ ℕ) |
| 19 | simpr 484 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0) | |
| 20 | nn0rp0 13476 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (0[,)+∞)) | |
| 21 | 20 | adantr 480 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈ (0[,)+∞)) |
| 22 | nn0digval 48455 | . . . 4 ⊢ ((2 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ (0[,)+∞)) → (𝐾(digit‘2)𝑁) = ((⌊‘(𝑁 / (2↑𝐾))) mod 2)) | |
| 23 | 18, 19, 21, 22 | syl3anc 1372 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → (𝐾(digit‘2)𝑁) = ((⌊‘(𝑁 / (2↑𝐾))) mod 2)) |
| 24 | 23 | eqeq1d 2736 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → ((𝐾(digit‘2)𝑁) = 1 ↔ ((⌊‘(𝑁 / (2↑𝐾))) mod 2) = 1)) |
| 25 | nn0z 12620 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
| 26 | bitsval2 16443 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ0) → (𝐾 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝐾))))) | |
| 27 | 25, 26 | sylan 580 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → (𝐾 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝐾))))) |
| 28 | 16, 24, 27 | 3bitr4d 311 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → ((𝐾(digit‘2)𝑁) = 1 ↔ 𝐾 ∈ (bits‘𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 class class class wbr 5123 ‘cfv 6540 (class class class)co 7412 ℝcr 11135 0cc0 11136 1c1 11137 +∞cpnf 11273 / cdiv 11901 ℕcn 12247 2c2 12302 ℕ0cn0 12508 ℤcz 12595 [,)cico 13370 ⌊cfl 13811 mod cmo 13890 ↑cexp 14083 ∥ cdvds 16271 bitscbits 16437 digitcdig 48450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-sup 9463 df-inf 9464 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-div 11902 df-nn 12248 df-2 12310 df-n0 12509 df-z 12596 df-uz 12860 df-rp 13016 df-ico 13374 df-fl 13813 df-mod 13891 df-seq 14024 df-exp 14084 df-dvds 16272 df-bits 16440 df-dig 48451 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |