![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dig2bits | Structured version Visualization version GIF version |
Description: The πΎ th digit of a nonnegative integer π in a binary system is its πΎ th bit. (Contributed by AV, 24-May-2020.) |
Ref | Expression |
---|---|
dig2bits | β’ ((π β β0 β§ πΎ β β0) β ((πΎ(digitβ2)π) = 1 β πΎ β (bitsβπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re 12509 | . . . . . 6 β’ (π β β0 β π β β) | |
2 | 1 | adantr 479 | . . . . 5 β’ ((π β β0 β§ πΎ β β0) β π β β) |
3 | 2re 12314 | . . . . . . 7 β’ 2 β β | |
4 | 3 | a1i 11 | . . . . . 6 β’ (π β β0 β 2 β β) |
5 | reexpcl 14073 | . . . . . 6 β’ ((2 β β β§ πΎ β β0) β (2βπΎ) β β) | |
6 | 4, 5 | sylan 578 | . . . . 5 β’ ((π β β0 β§ πΎ β β0) β (2βπΎ) β β) |
7 | 2cnd 12318 | . . . . . 6 β’ ((π β β0 β§ πΎ β β0) β 2 β β) | |
8 | 2ne0 12344 | . . . . . . 7 β’ 2 β 0 | |
9 | 8 | a1i 11 | . . . . . 6 β’ ((π β β0 β§ πΎ β β0) β 2 β 0) |
10 | nn0z 12611 | . . . . . . 7 β’ (πΎ β β0 β πΎ β β€) | |
11 | 10 | adantl 480 | . . . . . 6 β’ ((π β β0 β§ πΎ β β0) β πΎ β β€) |
12 | 7, 9, 11 | expne0d 14146 | . . . . 5 β’ ((π β β0 β§ πΎ β β0) β (2βπΎ) β 0) |
13 | 2, 6, 12 | redivcld 12070 | . . . 4 β’ ((π β β0 β§ πΎ β β0) β (π / (2βπΎ)) β β) |
14 | 13 | flcld 13793 | . . 3 β’ ((π β β0 β§ πΎ β β0) β (ββ(π / (2βπΎ))) β β€) |
15 | mod2eq1n2dvds 16321 | . . 3 β’ ((ββ(π / (2βπΎ))) β β€ β (((ββ(π / (2βπΎ))) mod 2) = 1 β Β¬ 2 β₯ (ββ(π / (2βπΎ))))) | |
16 | 14, 15 | syl 17 | . 2 β’ ((π β β0 β§ πΎ β β0) β (((ββ(π / (2βπΎ))) mod 2) = 1 β Β¬ 2 β₯ (ββ(π / (2βπΎ))))) |
17 | 2nn 12313 | . . . . 5 β’ 2 β β | |
18 | 17 | a1i 11 | . . . 4 β’ ((π β β0 β§ πΎ β β0) β 2 β β) |
19 | simpr 483 | . . . 4 β’ ((π β β0 β§ πΎ β β0) β πΎ β β0) | |
20 | nn0rp0 13462 | . . . . 5 β’ (π β β0 β π β (0[,)+β)) | |
21 | 20 | adantr 479 | . . . 4 β’ ((π β β0 β§ πΎ β β0) β π β (0[,)+β)) |
22 | nn0digval 47757 | . . . 4 β’ ((2 β β β§ πΎ β β0 β§ π β (0[,)+β)) β (πΎ(digitβ2)π) = ((ββ(π / (2βπΎ))) mod 2)) | |
23 | 18, 19, 21, 22 | syl3anc 1368 | . . 3 β’ ((π β β0 β§ πΎ β β0) β (πΎ(digitβ2)π) = ((ββ(π / (2βπΎ))) mod 2)) |
24 | 23 | eqeq1d 2727 | . 2 β’ ((π β β0 β§ πΎ β β0) β ((πΎ(digitβ2)π) = 1 β ((ββ(π / (2βπΎ))) mod 2) = 1)) |
25 | nn0z 12611 | . . 3 β’ (π β β0 β π β β€) | |
26 | bitsval2 16397 | . . 3 β’ ((π β β€ β§ πΎ β β0) β (πΎ β (bitsβπ) β Β¬ 2 β₯ (ββ(π / (2βπΎ))))) | |
27 | 25, 26 | sylan 578 | . 2 β’ ((π β β0 β§ πΎ β β0) β (πΎ β (bitsβπ) β Β¬ 2 β₯ (ββ(π / (2βπΎ))))) |
28 | 16, 24, 27 | 3bitr4d 310 | 1 β’ ((π β β0 β§ πΎ β β0) β ((πΎ(digitβ2)π) = 1 β πΎ β (bitsβπ))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 394 = wceq 1533 β wcel 2098 β wne 2930 class class class wbr 5141 βcfv 6541 (class class class)co 7414 βcr 11135 0cc0 11136 1c1 11137 +βcpnf 11273 / cdiv 11899 βcn 12240 2c2 12295 β0cn0 12500 β€cz 12586 [,)cico 13356 βcfl 13785 mod cmo 13864 βcexp 14056 β₯ cdvds 16228 bitscbits 16391 digitcdig 47752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5357 ax-pr 5421 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3958 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7867 df-1st 7989 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-sup 9463 df-inf 9464 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-div 11900 df-nn 12241 df-2 12303 df-n0 12501 df-z 12587 df-uz 12851 df-rp 13005 df-ico 13360 df-fl 13787 df-mod 13865 df-seq 13997 df-exp 14057 df-dvds 16229 df-bits 16394 df-dig 47753 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |