![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dig2bits | Structured version Visualization version GIF version |
Description: The πΎ th digit of a nonnegative integer π in a binary system is its πΎ th bit. (Contributed by AV, 24-May-2020.) |
Ref | Expression |
---|---|
dig2bits | β’ ((π β β0 β§ πΎ β β0) β ((πΎ(digitβ2)π) = 1 β πΎ β (bitsβπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re 12477 | . . . . . 6 β’ (π β β0 β π β β) | |
2 | 1 | adantr 481 | . . . . 5 β’ ((π β β0 β§ πΎ β β0) β π β β) |
3 | 2re 12282 | . . . . . . 7 β’ 2 β β | |
4 | 3 | a1i 11 | . . . . . 6 β’ (π β β0 β 2 β β) |
5 | reexpcl 14040 | . . . . . 6 β’ ((2 β β β§ πΎ β β0) β (2βπΎ) β β) | |
6 | 4, 5 | sylan 580 | . . . . 5 β’ ((π β β0 β§ πΎ β β0) β (2βπΎ) β β) |
7 | 2cnd 12286 | . . . . . 6 β’ ((π β β0 β§ πΎ β β0) β 2 β β) | |
8 | 2ne0 12312 | . . . . . . 7 β’ 2 β 0 | |
9 | 8 | a1i 11 | . . . . . 6 β’ ((π β β0 β§ πΎ β β0) β 2 β 0) |
10 | nn0z 12579 | . . . . . . 7 β’ (πΎ β β0 β πΎ β β€) | |
11 | 10 | adantl 482 | . . . . . 6 β’ ((π β β0 β§ πΎ β β0) β πΎ β β€) |
12 | 7, 9, 11 | expne0d 14113 | . . . . 5 β’ ((π β β0 β§ πΎ β β0) β (2βπΎ) β 0) |
13 | 2, 6, 12 | redivcld 12038 | . . . 4 β’ ((π β β0 β§ πΎ β β0) β (π / (2βπΎ)) β β) |
14 | 13 | flcld 13759 | . . 3 β’ ((π β β0 β§ πΎ β β0) β (ββ(π / (2βπΎ))) β β€) |
15 | mod2eq1n2dvds 16286 | . . 3 β’ ((ββ(π / (2βπΎ))) β β€ β (((ββ(π / (2βπΎ))) mod 2) = 1 β Β¬ 2 β₯ (ββ(π / (2βπΎ))))) | |
16 | 14, 15 | syl 17 | . 2 β’ ((π β β0 β§ πΎ β β0) β (((ββ(π / (2βπΎ))) mod 2) = 1 β Β¬ 2 β₯ (ββ(π / (2βπΎ))))) |
17 | 2nn 12281 | . . . . 5 β’ 2 β β | |
18 | 17 | a1i 11 | . . . 4 β’ ((π β β0 β§ πΎ β β0) β 2 β β) |
19 | simpr 485 | . . . 4 β’ ((π β β0 β§ πΎ β β0) β πΎ β β0) | |
20 | nn0rp0 13428 | . . . . 5 β’ (π β β0 β π β (0[,)+β)) | |
21 | 20 | adantr 481 | . . . 4 β’ ((π β β0 β§ πΎ β β0) β π β (0[,)+β)) |
22 | nn0digval 47239 | . . . 4 β’ ((2 β β β§ πΎ β β0 β§ π β (0[,)+β)) β (πΎ(digitβ2)π) = ((ββ(π / (2βπΎ))) mod 2)) | |
23 | 18, 19, 21, 22 | syl3anc 1371 | . . 3 β’ ((π β β0 β§ πΎ β β0) β (πΎ(digitβ2)π) = ((ββ(π / (2βπΎ))) mod 2)) |
24 | 23 | eqeq1d 2734 | . 2 β’ ((π β β0 β§ πΎ β β0) β ((πΎ(digitβ2)π) = 1 β ((ββ(π / (2βπΎ))) mod 2) = 1)) |
25 | nn0z 12579 | . . 3 β’ (π β β0 β π β β€) | |
26 | bitsval2 16362 | . . 3 β’ ((π β β€ β§ πΎ β β0) β (πΎ β (bitsβπ) β Β¬ 2 β₯ (ββ(π / (2βπΎ))))) | |
27 | 25, 26 | sylan 580 | . 2 β’ ((π β β0 β§ πΎ β β0) β (πΎ β (bitsβπ) β Β¬ 2 β₯ (ββ(π / (2βπΎ))))) |
28 | 16, 24, 27 | 3bitr4d 310 | 1 β’ ((π β β0 β§ πΎ β β0) β ((πΎ(digitβ2)π) = 1 β πΎ β (bitsβπ))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 β wne 2940 class class class wbr 5147 βcfv 6540 (class class class)co 7405 βcr 11105 0cc0 11106 1c1 11107 +βcpnf 11241 / cdiv 11867 βcn 12208 2c2 12263 β0cn0 12468 β€cz 12554 [,)cico 13322 βcfl 13751 mod cmo 13830 βcexp 14023 β₯ cdvds 16193 bitscbits 16356 digitcdig 47234 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-sup 9433 df-inf 9434 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-n0 12469 df-z 12555 df-uz 12819 df-rp 12971 df-ico 13326 df-fl 13753 df-mod 13831 df-seq 13963 df-exp 14024 df-dvds 16194 df-bits 16359 df-dig 47235 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |