Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dig2bits Structured version   Visualization version   GIF version

Theorem dig2bits 45848
Description: The 𝐾 th digit of a nonnegative integer 𝑁 in a binary system is its 𝐾 th bit. (Contributed by AV, 24-May-2020.)
Assertion
Ref Expression
dig2bits ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0) → ((𝐾(digit‘2)𝑁) = 1 ↔ 𝐾 ∈ (bits‘𝑁)))

Proof of Theorem dig2bits
StepHypRef Expression
1 nn0re 12172 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
21adantr 480 . . . . 5 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0) → 𝑁 ∈ ℝ)
3 2re 11977 . . . . . . 7 2 ∈ ℝ
43a1i 11 . . . . . 6 (𝑁 ∈ ℕ0 → 2 ∈ ℝ)
5 reexpcl 13727 . . . . . 6 ((2 ∈ ℝ ∧ 𝐾 ∈ ℕ0) → (2↑𝐾) ∈ ℝ)
64, 5sylan 579 . . . . 5 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0) → (2↑𝐾) ∈ ℝ)
7 2cnd 11981 . . . . . 6 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0) → 2 ∈ ℂ)
8 2ne0 12007 . . . . . . 7 2 ≠ 0
98a1i 11 . . . . . 6 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0) → 2 ≠ 0)
10 nn0z 12273 . . . . . . 7 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
1110adantl 481 . . . . . 6 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0) → 𝐾 ∈ ℤ)
127, 9, 11expne0d 13798 . . . . 5 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0) → (2↑𝐾) ≠ 0)
132, 6, 12redivcld 11733 . . . 4 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑁 / (2↑𝐾)) ∈ ℝ)
1413flcld 13446 . . 3 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0) → (⌊‘(𝑁 / (2↑𝐾))) ∈ ℤ)
15 mod2eq1n2dvds 15984 . . 3 ((⌊‘(𝑁 / (2↑𝐾))) ∈ ℤ → (((⌊‘(𝑁 / (2↑𝐾))) mod 2) = 1 ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝐾)))))
1614, 15syl 17 . 2 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0) → (((⌊‘(𝑁 / (2↑𝐾))) mod 2) = 1 ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝐾)))))
17 2nn 11976 . . . . 5 2 ∈ ℕ
1817a1i 11 . . . 4 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0) → 2 ∈ ℕ)
19 simpr 484 . . . 4 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0)
20 nn0rp0 13116 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ (0[,)+∞))
2120adantr 480 . . . 4 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0) → 𝑁 ∈ (0[,)+∞))
22 nn0digval 45834 . . . 4 ((2 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑁 ∈ (0[,)+∞)) → (𝐾(digit‘2)𝑁) = ((⌊‘(𝑁 / (2↑𝐾))) mod 2))
2318, 19, 21, 22syl3anc 1369 . . 3 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0) → (𝐾(digit‘2)𝑁) = ((⌊‘(𝑁 / (2↑𝐾))) mod 2))
2423eqeq1d 2740 . 2 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0) → ((𝐾(digit‘2)𝑁) = 1 ↔ ((⌊‘(𝑁 / (2↑𝐾))) mod 2) = 1))
25 nn0z 12273 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
26 bitsval2 16060 . . 3 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ0) → (𝐾 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝐾)))))
2725, 26sylan 579 . 2 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0) → (𝐾 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝐾)))))
2816, 24, 273bitr4d 310 1 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0) → ((𝐾(digit‘2)𝑁) = 1 ↔ 𝐾 ∈ (bits‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803  +∞cpnf 10937   / cdiv 11562  cn 11903  2c2 11958  0cn0 12163  cz 12249  [,)cico 13010  cfl 13438   mod cmo 13517  cexp 13710  cdvds 15891  bitscbits 16054  digitcdig 45829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ico 13014  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-dvds 15892  df-bits 16057  df-dig 45830
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator