| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dig2bits | Structured version Visualization version GIF version | ||
| Description: The 𝐾 th digit of a nonnegative integer 𝑁 in a binary system is its 𝐾 th bit. (Contributed by AV, 24-May-2020.) |
| Ref | Expression |
|---|---|
| dig2bits | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → ((𝐾(digit‘2)𝑁) = 1 ↔ 𝐾 ∈ (bits‘𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re 12393 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
| 2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈ ℝ) |
| 3 | 2re 12202 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
| 4 | 3 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℝ) |
| 5 | reexpcl 13985 | . . . . . 6 ⊢ ((2 ∈ ℝ ∧ 𝐾 ∈ ℕ0) → (2↑𝐾) ∈ ℝ) | |
| 6 | 4, 5 | sylan 580 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → (2↑𝐾) ∈ ℝ) |
| 7 | 2cnd 12206 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → 2 ∈ ℂ) | |
| 8 | 2ne0 12232 | . . . . . . 7 ⊢ 2 ≠ 0 | |
| 9 | 8 | a1i 11 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → 2 ≠ 0) |
| 10 | nn0z 12496 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ0 → 𝐾 ∈ ℤ) | |
| 11 | 10 | adantl 481 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℤ) |
| 12 | 7, 9, 11 | expne0d 14059 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → (2↑𝐾) ≠ 0) |
| 13 | 2, 6, 12 | redivcld 11952 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → (𝑁 / (2↑𝐾)) ∈ ℝ) |
| 14 | 13 | flcld 13702 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → (⌊‘(𝑁 / (2↑𝐾))) ∈ ℤ) |
| 15 | mod2eq1n2dvds 16258 | . . 3 ⊢ ((⌊‘(𝑁 / (2↑𝐾))) ∈ ℤ → (((⌊‘(𝑁 / (2↑𝐾))) mod 2) = 1 ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝐾))))) | |
| 16 | 14, 15 | syl 17 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → (((⌊‘(𝑁 / (2↑𝐾))) mod 2) = 1 ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝐾))))) |
| 17 | 2nn 12201 | . . . . 5 ⊢ 2 ∈ ℕ | |
| 18 | 17 | a1i 11 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → 2 ∈ ℕ) |
| 19 | simpr 484 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0) | |
| 20 | nn0rp0 13358 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (0[,)+∞)) | |
| 21 | 20 | adantr 480 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈ (0[,)+∞)) |
| 22 | nn0digval 48595 | . . . 4 ⊢ ((2 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ (0[,)+∞)) → (𝐾(digit‘2)𝑁) = ((⌊‘(𝑁 / (2↑𝐾))) mod 2)) | |
| 23 | 18, 19, 21, 22 | syl3anc 1373 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → (𝐾(digit‘2)𝑁) = ((⌊‘(𝑁 / (2↑𝐾))) mod 2)) |
| 24 | 23 | eqeq1d 2731 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → ((𝐾(digit‘2)𝑁) = 1 ↔ ((⌊‘(𝑁 / (2↑𝐾))) mod 2) = 1)) |
| 25 | nn0z 12496 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
| 26 | bitsval2 16336 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ0) → (𝐾 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝐾))))) | |
| 27 | 25, 26 | sylan 580 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → (𝐾 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝐾))))) |
| 28 | 16, 24, 27 | 3bitr4d 311 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → ((𝐾(digit‘2)𝑁) = 1 ↔ 𝐾 ∈ (bits‘𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 ℝcr 11008 0cc0 11009 1c1 11010 +∞cpnf 11146 / cdiv 11777 ℕcn 12128 2c2 12183 ℕ0cn0 12384 ℤcz 12471 [,)cico 13250 ⌊cfl 13694 mod cmo 13773 ↑cexp 13968 ∥ cdvds 16163 bitscbits 16330 digitcdig 48590 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-ico 13254 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-dvds 16164 df-bits 16333 df-dig 48591 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |