Proof of Theorem bitsinv1lem
| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 7440 |
. . 3
⊢
((2↑𝑀) =
if(𝑀 ∈
(bits‘𝑁),
(2↑𝑀), 0) →
((𝑁 mod (2↑𝑀)) + (2↑𝑀)) = ((𝑁 mod (2↑𝑀)) + if(𝑀 ∈ (bits‘𝑁), (2↑𝑀), 0))) |
| 2 | 1 | eqeq2d 2747 |
. 2
⊢
((2↑𝑀) =
if(𝑀 ∈
(bits‘𝑁),
(2↑𝑀), 0) →
((𝑁 mod (2↑(𝑀 + 1))) = ((𝑁 mod (2↑𝑀)) + (2↑𝑀)) ↔ (𝑁 mod (2↑(𝑀 + 1))) = ((𝑁 mod (2↑𝑀)) + if(𝑀 ∈ (bits‘𝑁), (2↑𝑀), 0)))) |
| 3 | | oveq2 7440 |
. . 3
⊢ (0 =
if(𝑀 ∈
(bits‘𝑁),
(2↑𝑀), 0) →
((𝑁 mod (2↑𝑀)) + 0) = ((𝑁 mod (2↑𝑀)) + if(𝑀 ∈ (bits‘𝑁), (2↑𝑀), 0))) |
| 4 | 3 | eqeq2d 2747 |
. 2
⊢ (0 =
if(𝑀 ∈
(bits‘𝑁),
(2↑𝑀), 0) →
((𝑁 mod (2↑(𝑀 + 1))) = ((𝑁 mod (2↑𝑀)) + 0) ↔ (𝑁 mod (2↑(𝑀 + 1))) = ((𝑁 mod (2↑𝑀)) + if(𝑀 ∈ (bits‘𝑁), (2↑𝑀), 0)))) |
| 5 | | simpl 482 |
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ 𝑁 ∈
ℤ) |
| 6 | | 2nn 12340 |
. . . . . . . . 9
⊢ 2 ∈
ℕ |
| 7 | 6 | a1i 11 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ 2 ∈ ℕ) |
| 8 | | simpr 484 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ 𝑀 ∈
ℕ0) |
| 9 | 7, 8 | nnexpcld 14285 |
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (2↑𝑀) ∈
ℕ) |
| 10 | 5, 9 | zmodcld 13933 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (𝑁 mod (2↑𝑀)) ∈
ℕ0) |
| 11 | 10 | nn0cnd 12591 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (𝑁 mod (2↑𝑀)) ∈
ℂ) |
| 12 | 11 | adantr 480 |
. . . 4
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑀 ∈
(bits‘𝑁)) →
(𝑁 mod (2↑𝑀)) ∈
ℂ) |
| 13 | | 1nn0 12544 |
. . . . . . . . . 10
⊢ 1 ∈
ℕ0 |
| 14 | 13 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ 1 ∈ ℕ0) |
| 15 | 8, 14 | nn0addcld 12593 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (𝑀 + 1) ∈
ℕ0) |
| 16 | 7, 15 | nnexpcld 14285 |
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (2↑(𝑀 + 1))
∈ ℕ) |
| 17 | 5, 16 | zmodcld 13933 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (𝑁 mod
(2↑(𝑀 + 1))) ∈
ℕ0) |
| 18 | 17 | nn0cnd 12591 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (𝑁 mod
(2↑(𝑀 + 1))) ∈
ℂ) |
| 19 | 18 | adantr 480 |
. . . 4
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑀 ∈
(bits‘𝑁)) →
(𝑁 mod (2↑(𝑀 + 1))) ∈
ℂ) |
| 20 | 12, 19 | pncan3d 11624 |
. . 3
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑀 ∈
(bits‘𝑁)) →
((𝑁 mod (2↑𝑀)) + ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀)))) = (𝑁 mod (2↑(𝑀 + 1)))) |
| 21 | 18, 11 | subcld 11621 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ ((𝑁 mod
(2↑(𝑀 + 1))) −
(𝑁 mod (2↑𝑀))) ∈
ℂ) |
| 22 | 21 | adantr 480 |
. . . . 5
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑀 ∈
(bits‘𝑁)) →
((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) ∈ ℂ) |
| 23 | 6 | a1i 11 |
. . . . . . 7
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑀 ∈
(bits‘𝑁)) → 2
∈ ℕ) |
| 24 | | simplr 768 |
. . . . . . 7
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑀 ∈
(bits‘𝑁)) →
𝑀 ∈
ℕ0) |
| 25 | 23, 24 | nnexpcld 14285 |
. . . . . 6
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑀 ∈
(bits‘𝑁)) →
(2↑𝑀) ∈
ℕ) |
| 26 | 25 | nncnd 12283 |
. . . . 5
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑀 ∈
(bits‘𝑁)) →
(2↑𝑀) ∈
ℂ) |
| 27 | | 2cnd 12345 |
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ 2 ∈ ℂ) |
| 28 | | 2ne0 12371 |
. . . . . . . 8
⊢ 2 ≠
0 |
| 29 | 28 | a1i 11 |
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ 2 ≠ 0) |
| 30 | 8 | nn0zd 12641 |
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ 𝑀 ∈
ℤ) |
| 31 | 27, 29, 30 | expne0d 14193 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (2↑𝑀) ≠
0) |
| 32 | 31 | adantr 480 |
. . . . 5
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑀 ∈
(bits‘𝑁)) →
(2↑𝑀) ≠
0) |
| 33 | | z0even 16405 |
. . . . . . . . . 10
⊢ 2 ∥
0 |
| 34 | | id 22 |
. . . . . . . . . 10
⊢ ((((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 0 → (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 0) |
| 35 | 33, 34 | breqtrrid 5180 |
. . . . . . . . 9
⊢ ((((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 0 → 2 ∥ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀))) |
| 36 | | bitsval2 16463 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (𝑀 ∈
(bits‘𝑁) ↔ ¬
2 ∥ (⌊‘(𝑁
/ (2↑𝑀))))) |
| 37 | 5 | zred 12724 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ 𝑁 ∈
ℝ) |
| 38 | 9 | nnrpd 13076 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (2↑𝑀) ∈
ℝ+) |
| 39 | | moddiffl 13923 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℝ ∧
(2↑𝑀) ∈
ℝ+) → ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = (⌊‘(𝑁 / (2↑𝑀)))) |
| 40 | 37, 38, 39 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = (⌊‘(𝑁 / (2↑𝑀)))) |
| 41 | 40 | breq2d 5154 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (2 ∥ ((𝑁
− (𝑁 mod
(2↑𝑀))) /
(2↑𝑀)) ↔ 2
∥ (⌊‘(𝑁 /
(2↑𝑀))))) |
| 42 | | 2z 12651 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℤ |
| 43 | 42 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ 2 ∈ ℤ) |
| 44 | | moddifz 13924 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℝ ∧
(2↑𝑀) ∈
ℝ+) → ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ ℤ) |
| 45 | 37, 38, 44 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ ℤ) |
| 46 | 5 | zcnd 12725 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ 𝑁 ∈
ℂ) |
| 47 | 46, 11, 18 | nnncan1d 11655 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ ((𝑁 − (𝑁 mod (2↑𝑀))) − (𝑁 − (𝑁 mod (2↑(𝑀 + 1))))) = ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀)))) |
| 48 | 47 | oveq1d 7447 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (((𝑁 − (𝑁 mod (2↑𝑀))) − (𝑁 − (𝑁 mod (2↑(𝑀 + 1))))) / (2↑𝑀)) = (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀))) |
| 49 | 46, 11 | subcld 11621 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (𝑁 − (𝑁 mod (2↑𝑀))) ∈ ℂ) |
| 50 | 46, 18 | subcld 11621 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) ∈ ℂ) |
| 51 | 9 | nncnd 12283 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (2↑𝑀) ∈
ℂ) |
| 52 | 49, 50, 51, 31 | divsubdird 12083 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (((𝑁 − (𝑁 mod (2↑𝑀))) − (𝑁 − (𝑁 mod (2↑(𝑀 + 1))))) / (2↑𝑀)) = (((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) − ((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) / (2↑𝑀)))) |
| 53 | 48, 52 | eqtr3d 2778 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (((𝑁 mod
(2↑(𝑀 + 1))) −
(𝑁 mod (2↑𝑀))) / (2↑𝑀)) = (((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) − ((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) / (2↑𝑀)))) |
| 54 | 27, 50 | mulcomd 11283 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (2 · (𝑁
− (𝑁 mod
(2↑(𝑀 + 1))))) =
((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) · 2)) |
| 55 | 27, 51 | mulcomd 11283 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (2 · (2↑𝑀)) = ((2↑𝑀) · 2)) |
| 56 | 27, 8 | expp1d 14188 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (2↑(𝑀 + 1)) =
((2↑𝑀) ·
2)) |
| 57 | 55, 56 | eqtr4d 2779 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (2 · (2↑𝑀)) = (2↑(𝑀 + 1))) |
| 58 | 54, 57 | oveq12d 7450 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ ((2 · (𝑁
− (𝑁 mod
(2↑(𝑀 + 1))))) / (2
· (2↑𝑀))) =
(((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) · 2) / (2↑(𝑀 + 1)))) |
| 59 | 50, 51, 27, 31, 29 | divcan5d 12070 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ ((2 · (𝑁
− (𝑁 mod
(2↑(𝑀 + 1))))) / (2
· (2↑𝑀))) =
((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) / (2↑𝑀))) |
| 60 | 16 | nncnd 12283 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (2↑(𝑀 + 1))
∈ ℂ) |
| 61 | 30 | peano2zd 12727 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (𝑀 + 1) ∈
ℤ) |
| 62 | 27, 29, 61 | expne0d 14193 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (2↑(𝑀 + 1))
≠ 0) |
| 63 | 50, 27, 60, 62 | div23d 12081 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) · 2) / (2↑(𝑀 + 1))) = (((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) / (2↑(𝑀 + 1))) · 2)) |
| 64 | 58, 59, 63 | 3eqtr3d 2784 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ ((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) / (2↑𝑀)) = (((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) / (2↑(𝑀 + 1))) · 2)) |
| 65 | 16 | nnrpd 13076 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (2↑(𝑀 + 1))
∈ ℝ+) |
| 66 | | moddifz 13924 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈ ℝ ∧
(2↑(𝑀 + 1)) ∈
ℝ+) → ((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) / (2↑(𝑀 + 1))) ∈ ℤ) |
| 67 | 37, 65, 66 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ ((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) / (2↑(𝑀 + 1))) ∈ ℤ) |
| 68 | 67, 43 | zmulcld 12730 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) / (2↑(𝑀 + 1))) · 2) ∈
ℤ) |
| 69 | 64, 68 | eqeltrd 2840 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ ((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) / (2↑𝑀)) ∈ ℤ) |
| 70 | 45, 69 | zsubcld 12729 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) − ((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) / (2↑𝑀))) ∈ ℤ) |
| 71 | 53, 70 | eqeltrd 2840 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (((𝑁 mod
(2↑(𝑀 + 1))) −
(𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ ℤ) |
| 72 | | dvdsmul2 16317 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) / (2↑(𝑀 + 1))) ∈ ℤ ∧ 2 ∈
ℤ) → 2 ∥ (((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) / (2↑(𝑀 + 1))) · 2)) |
| 73 | 67, 43, 72 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ 2 ∥ (((𝑁
− (𝑁 mod
(2↑(𝑀 + 1)))) /
(2↑(𝑀 + 1))) ·
2)) |
| 74 | 46, 18, 11 | nnncan2d 11656 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ ((𝑁 − (𝑁 mod (2↑𝑀))) − ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀)))) = (𝑁 − (𝑁 mod (2↑(𝑀 + 1))))) |
| 75 | 74 | oveq1d 7447 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (((𝑁 − (𝑁 mod (2↑𝑀))) − ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀)))) / (2↑𝑀)) = ((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) / (2↑𝑀))) |
| 76 | 49, 21, 51, 31 | divsubdird 12083 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (((𝑁 − (𝑁 mod (2↑𝑀))) − ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀)))) / (2↑𝑀)) = (((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) − (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)))) |
| 77 | 75, 76, 64 | 3eqtr3d 2784 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) − (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀))) = (((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) / (2↑(𝑀 + 1))) · 2)) |
| 78 | 73, 77 | breqtrrd 5170 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ 2 ∥ (((𝑁
− (𝑁 mod
(2↑𝑀))) /
(2↑𝑀)) −
(((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)))) |
| 79 | | dvdssub2 16339 |
. . . . . . . . . . . . . 14
⊢ (((2
∈ ℤ ∧ ((𝑁
− (𝑁 mod
(2↑𝑀))) /
(2↑𝑀)) ∈ ℤ
∧ (((𝑁 mod
(2↑(𝑀 + 1))) −
(𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ ℤ) ∧ 2 ∥ (((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) − (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)))) → (2 ∥ ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ↔ 2 ∥ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)))) |
| 80 | 43, 45, 71, 78, 79 | syl31anc 1374 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (2 ∥ ((𝑁
− (𝑁 mod
(2↑𝑀))) /
(2↑𝑀)) ↔ 2
∥ (((𝑁 mod
(2↑(𝑀 + 1))) −
(𝑁 mod (2↑𝑀))) / (2↑𝑀)))) |
| 81 | 41, 80 | bitr3d 281 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (2 ∥ (⌊‘(𝑁 / (2↑𝑀))) ↔ 2 ∥ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)))) |
| 82 | 81 | notbid 318 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀))) ↔ ¬ 2 ∥ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)))) |
| 83 | 36, 82 | bitrd 279 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (𝑀 ∈
(bits‘𝑁) ↔ ¬
2 ∥ (((𝑁 mod
(2↑(𝑀 + 1))) −
(𝑁 mod (2↑𝑀))) / (2↑𝑀)))) |
| 84 | 83 | con2bid 354 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (2 ∥ (((𝑁 mod
(2↑(𝑀 + 1))) −
(𝑁 mod (2↑𝑀))) / (2↑𝑀)) ↔ ¬ 𝑀 ∈ (bits‘𝑁))) |
| 85 | 35, 84 | imbitrid 244 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ ((((𝑁 mod
(2↑(𝑀 + 1))) −
(𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 0 → ¬ 𝑀 ∈ (bits‘𝑁))) |
| 86 | 85 | con2d 134 |
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (𝑀 ∈
(bits‘𝑁) → ¬
(((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 0)) |
| 87 | | df-neg 11496 |
. . . . . . . . . . . . . . 15
⊢ -1 = (0
− 1) |
| 88 | 51 | mulm1d 11716 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (-1 · (2↑𝑀)) = -(2↑𝑀)) |
| 89 | 9 | nnred 12282 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (2↑𝑀) ∈
ℝ) |
| 90 | 89 | renegcld 11691 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ -(2↑𝑀) ∈
ℝ) |
| 91 | 37, 38 | modcld 13916 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (𝑁 mod (2↑𝑀)) ∈
ℝ) |
| 92 | 91 | renegcld 11691 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ -(𝑁 mod
(2↑𝑀)) ∈
ℝ) |
| 93 | 37, 65 | modcld 13916 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (𝑁 mod
(2↑(𝑀 + 1))) ∈
ℝ) |
| 94 | 93, 91 | resubcld 11692 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ ((𝑁 mod
(2↑(𝑀 + 1))) −
(𝑁 mod (2↑𝑀))) ∈
ℝ) |
| 95 | | modlt 13921 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 ∈ ℝ ∧
(2↑𝑀) ∈
ℝ+) → (𝑁 mod (2↑𝑀)) < (2↑𝑀)) |
| 96 | 37, 38, 95 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (𝑁 mod (2↑𝑀)) < (2↑𝑀)) |
| 97 | 91, 89 | ltnegd 11842 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ ((𝑁 mod
(2↑𝑀)) <
(2↑𝑀) ↔
-(2↑𝑀) < -(𝑁 mod (2↑𝑀)))) |
| 98 | 96, 97 | mpbid 232 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ -(2↑𝑀) <
-(𝑁 mod (2↑𝑀))) |
| 99 | | df-neg 11496 |
. . . . . . . . . . . . . . . . . . 19
⊢ -(𝑁 mod (2↑𝑀)) = (0 − (𝑁 mod (2↑𝑀))) |
| 100 | | 0red 11265 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ 0 ∈ ℝ) |
| 101 | | modge0 13920 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑁 ∈ ℝ ∧
(2↑(𝑀 + 1)) ∈
ℝ+) → 0 ≤ (𝑁 mod (2↑(𝑀 + 1)))) |
| 102 | 37, 65, 101 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ 0 ≤ (𝑁 mod
(2↑(𝑀 +
1)))) |
| 103 | 100, 93, 91, 102 | lesub1dd 11880 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (0 − (𝑁 mod
(2↑𝑀))) ≤ ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀)))) |
| 104 | 99, 103 | eqbrtrid 5177 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ -(𝑁 mod
(2↑𝑀)) ≤ ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀)))) |
| 105 | 90, 92, 94, 98, 104 | ltletrd 11422 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ -(2↑𝑀) <
((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀)))) |
| 106 | 88, 105 | eqbrtrd 5164 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (-1 · (2↑𝑀)) < ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀)))) |
| 107 | | 1red 11263 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ 1 ∈ ℝ) |
| 108 | 107 | renegcld 11691 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ -1 ∈ ℝ) |
| 109 | 108, 94, 38 | ltmuldivd 13125 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ ((-1 · (2↑𝑀)) < ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) ↔ -1 < (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)))) |
| 110 | 106, 109 | mpbid 232 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ -1 < (((𝑁 mod
(2↑(𝑀 + 1))) −
(𝑁 mod (2↑𝑀))) / (2↑𝑀))) |
| 111 | 87, 110 | eqbrtrrid 5178 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (0 − 1) < (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀))) |
| 112 | | 0zd 12627 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ 0 ∈ ℤ) |
| 113 | | zlem1lt 12671 |
. . . . . . . . . . . . . . 15
⊢ ((0
∈ ℤ ∧ (((𝑁
mod (2↑(𝑀 + 1)))
− (𝑁 mod
(2↑𝑀))) /
(2↑𝑀)) ∈ ℤ)
→ (0 ≤ (((𝑁 mod
(2↑(𝑀 + 1))) −
(𝑁 mod (2↑𝑀))) / (2↑𝑀)) ↔ (0 − 1) < (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)))) |
| 114 | 112, 71, 113 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (0 ≤ (((𝑁 mod
(2↑(𝑀 + 1))) −
(𝑁 mod (2↑𝑀))) / (2↑𝑀)) ↔ (0 − 1) < (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)))) |
| 115 | 111, 114 | mpbird 257 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ 0 ≤ (((𝑁 mod
(2↑(𝑀 + 1))) −
(𝑁 mod (2↑𝑀))) / (2↑𝑀))) |
| 116 | | elnn0z 12628 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ ℕ0 ↔
((((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ ℤ ∧ 0 ≤ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)))) |
| 117 | 71, 115, 116 | sylanbrc 583 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (((𝑁 mod
(2↑(𝑀 + 1))) −
(𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈
ℕ0) |
| 118 | | nn0uz 12921 |
. . . . . . . . . . . 12
⊢
ℕ0 = (ℤ≥‘0) |
| 119 | 117, 118 | eleqtrdi 2850 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (((𝑁 mod
(2↑(𝑀 + 1))) −
(𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈
(ℤ≥‘0)) |
| 120 | 16 | nnred 12282 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (2↑(𝑀 + 1))
∈ ℝ) |
| 121 | | modge0 13920 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℝ ∧
(2↑𝑀) ∈
ℝ+) → 0 ≤ (𝑁 mod (2↑𝑀))) |
| 122 | 37, 38, 121 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ 0 ≤ (𝑁 mod
(2↑𝑀))) |
| 123 | 93, 91 | subge02d 11856 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (0 ≤ (𝑁 mod
(2↑𝑀)) ↔ ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) ≤ (𝑁 mod (2↑(𝑀 + 1))))) |
| 124 | 122, 123 | mpbid 232 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ ((𝑁 mod
(2↑(𝑀 + 1))) −
(𝑁 mod (2↑𝑀))) ≤ (𝑁 mod (2↑(𝑀 + 1)))) |
| 125 | | modlt 13921 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℝ ∧
(2↑(𝑀 + 1)) ∈
ℝ+) → (𝑁 mod (2↑(𝑀 + 1))) < (2↑(𝑀 + 1))) |
| 126 | 37, 65, 125 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (𝑁 mod
(2↑(𝑀 + 1))) <
(2↑(𝑀 +
1))) |
| 127 | 94, 93, 120, 124, 126 | lelttrd 11420 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ ((𝑁 mod
(2↑(𝑀 + 1))) −
(𝑁 mod (2↑𝑀))) < (2↑(𝑀 + 1))) |
| 128 | 127, 56 | breqtrd 5168 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ ((𝑁 mod
(2↑(𝑀 + 1))) −
(𝑁 mod (2↑𝑀))) < ((2↑𝑀) · 2)) |
| 129 | 7 | nnred 12282 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ 2 ∈ ℝ) |
| 130 | 94, 129, 38 | ltdivmuld 13129 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ ((((𝑁 mod
(2↑(𝑀 + 1))) −
(𝑁 mod (2↑𝑀))) / (2↑𝑀)) < 2 ↔ ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) < ((2↑𝑀) · 2))) |
| 131 | 128, 130 | mpbird 257 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (((𝑁 mod
(2↑(𝑀 + 1))) −
(𝑁 mod (2↑𝑀))) / (2↑𝑀)) < 2) |
| 132 | | elfzo2 13703 |
. . . . . . . . . . 11
⊢ ((((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ (0..^2) ↔ ((((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ (ℤ≥‘0)
∧ 2 ∈ ℤ ∧ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) < 2)) |
| 133 | 119, 43, 131, 132 | syl3anbrc 1343 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (((𝑁 mod
(2↑(𝑀 + 1))) −
(𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ (0..^2)) |
| 134 | | fzo0to2pr 13790 |
. . . . . . . . . 10
⊢ (0..^2) =
{0, 1} |
| 135 | 133, 134 | eleqtrdi 2850 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (((𝑁 mod
(2↑(𝑀 + 1))) −
(𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ {0, 1}) |
| 136 | | elpri 4648 |
. . . . . . . . 9
⊢ ((((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ {0, 1} → ((((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 0 ∨ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 1)) |
| 137 | 135, 136 | syl 17 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ ((((𝑁 mod
(2↑(𝑀 + 1))) −
(𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 0 ∨ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 1)) |
| 138 | 137 | ord 864 |
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (¬ (((𝑁 mod
(2↑(𝑀 + 1))) −
(𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 0 → (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 1)) |
| 139 | 86, 138 | syld 47 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (𝑀 ∈
(bits‘𝑁) →
(((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 1)) |
| 140 | 139 | imp 406 |
. . . . 5
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑀 ∈
(bits‘𝑁)) →
(((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 1) |
| 141 | 22, 26, 32, 140 | diveq1d 12052 |
. . . 4
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑀 ∈
(bits‘𝑁)) →
((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) = (2↑𝑀)) |
| 142 | 141 | oveq2d 7448 |
. . 3
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑀 ∈
(bits‘𝑁)) →
((𝑁 mod (2↑𝑀)) + ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀)))) = ((𝑁 mod (2↑𝑀)) + (2↑𝑀))) |
| 143 | 20, 142 | eqtr3d 2778 |
. 2
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑀 ∈
(bits‘𝑁)) →
(𝑁 mod (2↑(𝑀 + 1))) = ((𝑁 mod (2↑𝑀)) + (2↑𝑀))) |
| 144 | 18 | adantr 480 |
. . . 4
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ ¬ 𝑀 ∈
(bits‘𝑁)) →
(𝑁 mod (2↑(𝑀 + 1))) ∈
ℂ) |
| 145 | 11 | adantr 480 |
. . . 4
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ ¬ 𝑀 ∈
(bits‘𝑁)) →
(𝑁 mod (2↑𝑀)) ∈
ℂ) |
| 146 | 21 | adantr 480 |
. . . . 5
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ ¬ 𝑀 ∈
(bits‘𝑁)) →
((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) ∈ ℂ) |
| 147 | 51 | adantr 480 |
. . . . 5
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ ¬ 𝑀 ∈
(bits‘𝑁)) →
(2↑𝑀) ∈
ℂ) |
| 148 | 31 | adantr 480 |
. . . . 5
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ ¬ 𝑀 ∈
(bits‘𝑁)) →
(2↑𝑀) ≠
0) |
| 149 | | n2dvds1 16406 |
. . . . . . . . . 10
⊢ ¬ 2
∥ 1 |
| 150 | | breq2 5146 |
. . . . . . . . . 10
⊢ ((((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 1 → (2 ∥ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ↔ 2 ∥ 1)) |
| 151 | 149, 150 | mtbiri 327 |
. . . . . . . . 9
⊢ ((((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 1 → ¬ 2 ∥ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀))) |
| 152 | 138, 151 | syl6 35 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (¬ (((𝑁 mod
(2↑(𝑀 + 1))) −
(𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 0 → ¬ 2 ∥ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)))) |
| 153 | 152, 83 | sylibrd 259 |
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (¬ (((𝑁 mod
(2↑(𝑀 + 1))) −
(𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 0 → 𝑀 ∈ (bits‘𝑁))) |
| 154 | 153 | con1d 145 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (¬ 𝑀 ∈
(bits‘𝑁) →
(((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 0)) |
| 155 | 154 | imp 406 |
. . . . 5
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ ¬ 𝑀 ∈
(bits‘𝑁)) →
(((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 0) |
| 156 | 146, 147,
148, 155 | diveq0d 12051 |
. . . 4
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ ¬ 𝑀 ∈
(bits‘𝑁)) →
((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) = 0) |
| 157 | 144, 145,
156 | subeq0d 11629 |
. . 3
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ ¬ 𝑀 ∈
(bits‘𝑁)) →
(𝑁 mod (2↑(𝑀 + 1))) = (𝑁 mod (2↑𝑀))) |
| 158 | 145 | addridd 11462 |
. . 3
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ ¬ 𝑀 ∈
(bits‘𝑁)) →
((𝑁 mod (2↑𝑀)) + 0) = (𝑁 mod (2↑𝑀))) |
| 159 | 157, 158 | eqtr4d 2779 |
. 2
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ ¬ 𝑀 ∈
(bits‘𝑁)) →
(𝑁 mod (2↑(𝑀 + 1))) = ((𝑁 mod (2↑𝑀)) + 0)) |
| 160 | 2, 4, 143, 159 | ifbothda 4563 |
1
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (𝑁 mod
(2↑(𝑀 + 1))) = ((𝑁 mod (2↑𝑀)) + if(𝑀 ∈ (bits‘𝑁), (2↑𝑀), 0))) |