MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsinv1lem Structured version   Visualization version   GIF version

Theorem bitsinv1lem 15792
Description: Lemma for bitsinv1 15793. (Contributed by Mario Carneiro, 22-Sep-2016.)
Assertion
Ref Expression
bitsinv1lem ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 mod (2↑(𝑀 + 1))) = ((𝑁 mod (2↑𝑀)) + if(𝑀 ∈ (bits‘𝑁), (2↑𝑀), 0)))

Proof of Theorem bitsinv1lem
StepHypRef Expression
1 oveq2 7166 . . 3 ((2↑𝑀) = if(𝑀 ∈ (bits‘𝑁), (2↑𝑀), 0) → ((𝑁 mod (2↑𝑀)) + (2↑𝑀)) = ((𝑁 mod (2↑𝑀)) + if(𝑀 ∈ (bits‘𝑁), (2↑𝑀), 0)))
21eqeq2d 2834 . 2 ((2↑𝑀) = if(𝑀 ∈ (bits‘𝑁), (2↑𝑀), 0) → ((𝑁 mod (2↑(𝑀 + 1))) = ((𝑁 mod (2↑𝑀)) + (2↑𝑀)) ↔ (𝑁 mod (2↑(𝑀 + 1))) = ((𝑁 mod (2↑𝑀)) + if(𝑀 ∈ (bits‘𝑁), (2↑𝑀), 0))))
3 oveq2 7166 . . 3 (0 = if(𝑀 ∈ (bits‘𝑁), (2↑𝑀), 0) → ((𝑁 mod (2↑𝑀)) + 0) = ((𝑁 mod (2↑𝑀)) + if(𝑀 ∈ (bits‘𝑁), (2↑𝑀), 0)))
43eqeq2d 2834 . 2 (0 = if(𝑀 ∈ (bits‘𝑁), (2↑𝑀), 0) → ((𝑁 mod (2↑(𝑀 + 1))) = ((𝑁 mod (2↑𝑀)) + 0) ↔ (𝑁 mod (2↑(𝑀 + 1))) = ((𝑁 mod (2↑𝑀)) + if(𝑀 ∈ (bits‘𝑁), (2↑𝑀), 0))))
5 simpl 485 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝑁 ∈ ℤ)
6 2nn 11713 . . . . . . . . 9 2 ∈ ℕ
76a1i 11 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 2 ∈ ℕ)
8 simpr 487 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝑀 ∈ ℕ0)
97, 8nnexpcld 13609 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑𝑀) ∈ ℕ)
105, 9zmodcld 13263 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 mod (2↑𝑀)) ∈ ℕ0)
1110nn0cnd 11960 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 mod (2↑𝑀)) ∈ ℂ)
1211adantr 483 . . . 4 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑀 ∈ (bits‘𝑁)) → (𝑁 mod (2↑𝑀)) ∈ ℂ)
13 1nn0 11916 . . . . . . . . . 10 1 ∈ ℕ0
1413a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 1 ∈ ℕ0)
158, 14nn0addcld 11962 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑀 + 1) ∈ ℕ0)
167, 15nnexpcld 13609 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑(𝑀 + 1)) ∈ ℕ)
175, 16zmodcld 13263 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 mod (2↑(𝑀 + 1))) ∈ ℕ0)
1817nn0cnd 11960 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 mod (2↑(𝑀 + 1))) ∈ ℂ)
1918adantr 483 . . . 4 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑀 ∈ (bits‘𝑁)) → (𝑁 mod (2↑(𝑀 + 1))) ∈ ℂ)
2012, 19pncan3d 11002 . . 3 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑀 ∈ (bits‘𝑁)) → ((𝑁 mod (2↑𝑀)) + ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀)))) = (𝑁 mod (2↑(𝑀 + 1))))
2118, 11subcld 10999 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) ∈ ℂ)
2221adantr 483 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑀 ∈ (bits‘𝑁)) → ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) ∈ ℂ)
236a1i 11 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑀 ∈ (bits‘𝑁)) → 2 ∈ ℕ)
24 simplr 767 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑀 ∈ (bits‘𝑁)) → 𝑀 ∈ ℕ0)
2523, 24nnexpcld 13609 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑀 ∈ (bits‘𝑁)) → (2↑𝑀) ∈ ℕ)
2625nncnd 11656 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑀 ∈ (bits‘𝑁)) → (2↑𝑀) ∈ ℂ)
27 2cnd 11718 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 2 ∈ ℂ)
28 2ne0 11744 . . . . . . . 8 2 ≠ 0
2928a1i 11 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 2 ≠ 0)
308nn0zd 12088 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝑀 ∈ ℤ)
3127, 29, 30expne0d 13519 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑𝑀) ≠ 0)
3231adantr 483 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑀 ∈ (bits‘𝑁)) → (2↑𝑀) ≠ 0)
33 z0even 15718 . . . . . . . . . 10 2 ∥ 0
34 id 22 . . . . . . . . . 10 ((((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 0 → (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 0)
3533, 34breqtrrid 5106 . . . . . . . . 9 ((((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 0 → 2 ∥ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)))
36 bitsval2 15776 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑀 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀)))))
375zred 12090 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝑁 ∈ ℝ)
389nnrpd 12432 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑𝑀) ∈ ℝ+)
39 moddiffl 13253 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ (2↑𝑀) ∈ ℝ+) → ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = (⌊‘(𝑁 / (2↑𝑀))))
4037, 38, 39syl2anc 586 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = (⌊‘(𝑁 / (2↑𝑀))))
4140breq2d 5080 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2 ∥ ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ↔ 2 ∥ (⌊‘(𝑁 / (2↑𝑀)))))
42 2z 12017 . . . . . . . . . . . . . . 15 2 ∈ ℤ
4342a1i 11 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 2 ∈ ℤ)
44 moddifz 13254 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ (2↑𝑀) ∈ ℝ+) → ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ ℤ)
4537, 38, 44syl2anc 586 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ ℤ)
465zcnd 12091 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝑁 ∈ ℂ)
4746, 11, 18nnncan1d 11033 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑁 − (𝑁 mod (2↑𝑀))) − (𝑁 − (𝑁 mod (2↑(𝑀 + 1))))) = ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))))
4847oveq1d 7173 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (((𝑁 − (𝑁 mod (2↑𝑀))) − (𝑁 − (𝑁 mod (2↑(𝑀 + 1))))) / (2↑𝑀)) = (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)))
4946, 11subcld 10999 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 − (𝑁 mod (2↑𝑀))) ∈ ℂ)
5046, 18subcld 10999 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) ∈ ℂ)
519nncnd 11656 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑𝑀) ∈ ℂ)
5249, 50, 51, 31divsubdird 11457 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (((𝑁 − (𝑁 mod (2↑𝑀))) − (𝑁 − (𝑁 mod (2↑(𝑀 + 1))))) / (2↑𝑀)) = (((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) − ((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) / (2↑𝑀))))
5348, 52eqtr3d 2860 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = (((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) − ((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) / (2↑𝑀))))
5427, 50mulcomd 10664 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2 · (𝑁 − (𝑁 mod (2↑(𝑀 + 1))))) = ((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) · 2))
5527, 51mulcomd 10664 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2 · (2↑𝑀)) = ((2↑𝑀) · 2))
5627, 8expp1d 13514 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑(𝑀 + 1)) = ((2↑𝑀) · 2))
5755, 56eqtr4d 2861 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2 · (2↑𝑀)) = (2↑(𝑀 + 1)))
5854, 57oveq12d 7176 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((2 · (𝑁 − (𝑁 mod (2↑(𝑀 + 1))))) / (2 · (2↑𝑀))) = (((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) · 2) / (2↑(𝑀 + 1))))
5950, 51, 27, 31, 29divcan5d 11444 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((2 · (𝑁 − (𝑁 mod (2↑(𝑀 + 1))))) / (2 · (2↑𝑀))) = ((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) / (2↑𝑀)))
6016nncnd 11656 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑(𝑀 + 1)) ∈ ℂ)
6130peano2zd 12093 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑀 + 1) ∈ ℤ)
6227, 29, 61expne0d 13519 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑(𝑀 + 1)) ≠ 0)
6350, 27, 60, 62div23d 11455 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) · 2) / (2↑(𝑀 + 1))) = (((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) / (2↑(𝑀 + 1))) · 2))
6458, 59, 633eqtr3d 2866 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) / (2↑𝑀)) = (((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) / (2↑(𝑀 + 1))) · 2))
6516nnrpd 12432 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑(𝑀 + 1)) ∈ ℝ+)
66 moddifz 13254 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℝ ∧ (2↑(𝑀 + 1)) ∈ ℝ+) → ((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) / (2↑(𝑀 + 1))) ∈ ℤ)
6737, 65, 66syl2anc 586 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) / (2↑(𝑀 + 1))) ∈ ℤ)
6867, 43zmulcld 12096 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) / (2↑(𝑀 + 1))) · 2) ∈ ℤ)
6964, 68eqeltrd 2915 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) / (2↑𝑀)) ∈ ℤ)
7045, 69zsubcld 12095 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) − ((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) / (2↑𝑀))) ∈ ℤ)
7153, 70eqeltrd 2915 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ ℤ)
72 dvdsmul2 15634 . . . . . . . . . . . . . . . 16 ((((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) / (2↑(𝑀 + 1))) ∈ ℤ ∧ 2 ∈ ℤ) → 2 ∥ (((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) / (2↑(𝑀 + 1))) · 2))
7367, 43, 72syl2anc 586 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 2 ∥ (((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) / (2↑(𝑀 + 1))) · 2))
7446, 18, 11nnncan2d 11034 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑁 − (𝑁 mod (2↑𝑀))) − ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀)))) = (𝑁 − (𝑁 mod (2↑(𝑀 + 1)))))
7574oveq1d 7173 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (((𝑁 − (𝑁 mod (2↑𝑀))) − ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀)))) / (2↑𝑀)) = ((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) / (2↑𝑀)))
7649, 21, 51, 31divsubdird 11457 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (((𝑁 − (𝑁 mod (2↑𝑀))) − ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀)))) / (2↑𝑀)) = (((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) − (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀))))
7775, 76, 643eqtr3d 2866 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) − (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀))) = (((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) / (2↑(𝑀 + 1))) · 2))
7873, 77breqtrrd 5096 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 2 ∥ (((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) − (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀))))
79 dvdssub2 15653 . . . . . . . . . . . . . 14 (((2 ∈ ℤ ∧ ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ ℤ ∧ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ ℤ) ∧ 2 ∥ (((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) − (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)))) → (2 ∥ ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ↔ 2 ∥ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀))))
8043, 45, 71, 78, 79syl31anc 1369 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2 ∥ ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ↔ 2 ∥ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀))))
8141, 80bitr3d 283 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2 ∥ (⌊‘(𝑁 / (2↑𝑀))) ↔ 2 ∥ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀))))
8281notbid 320 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀))) ↔ ¬ 2 ∥ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀))))
8336, 82bitrd 281 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑀 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀))))
8483con2bid 357 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2 ∥ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ↔ ¬ 𝑀 ∈ (bits‘𝑁)))
8535, 84syl5ib 246 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 0 → ¬ 𝑀 ∈ (bits‘𝑁)))
8685con2d 136 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑀 ∈ (bits‘𝑁) → ¬ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 0))
87 df-neg 10875 . . . . . . . . . . . . . . 15 -1 = (0 − 1)
8851mulm1d 11094 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (-1 · (2↑𝑀)) = -(2↑𝑀))
899nnred 11655 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑𝑀) ∈ ℝ)
9089renegcld 11069 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → -(2↑𝑀) ∈ ℝ)
9137, 38modcld 13246 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 mod (2↑𝑀)) ∈ ℝ)
9291renegcld 11069 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → -(𝑁 mod (2↑𝑀)) ∈ ℝ)
9337, 65modcld 13246 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 mod (2↑(𝑀 + 1))) ∈ ℝ)
9493, 91resubcld 11070 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) ∈ ℝ)
95 modlt 13251 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℝ ∧ (2↑𝑀) ∈ ℝ+) → (𝑁 mod (2↑𝑀)) < (2↑𝑀))
9637, 38, 95syl2anc 586 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 mod (2↑𝑀)) < (2↑𝑀))
9791, 89ltnegd 11220 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑁 mod (2↑𝑀)) < (2↑𝑀) ↔ -(2↑𝑀) < -(𝑁 mod (2↑𝑀))))
9896, 97mpbid 234 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → -(2↑𝑀) < -(𝑁 mod (2↑𝑀)))
99 df-neg 10875 . . . . . . . . . . . . . . . . . . 19 -(𝑁 mod (2↑𝑀)) = (0 − (𝑁 mod (2↑𝑀)))
100 0red 10646 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 0 ∈ ℝ)
101 modge0 13250 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℝ ∧ (2↑(𝑀 + 1)) ∈ ℝ+) → 0 ≤ (𝑁 mod (2↑(𝑀 + 1))))
10237, 65, 101syl2anc 586 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 0 ≤ (𝑁 mod (2↑(𝑀 + 1))))
103100, 93, 91, 102lesub1dd 11258 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (0 − (𝑁 mod (2↑𝑀))) ≤ ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))))
10499, 103eqbrtrid 5103 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → -(𝑁 mod (2↑𝑀)) ≤ ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))))
10590, 92, 94, 98, 104ltletrd 10802 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → -(2↑𝑀) < ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))))
10688, 105eqbrtrd 5090 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (-1 · (2↑𝑀)) < ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))))
107 1red 10644 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 1 ∈ ℝ)
108107renegcld 11069 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → -1 ∈ ℝ)
109108, 94, 38ltmuldivd 12481 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((-1 · (2↑𝑀)) < ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) ↔ -1 < (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀))))
110106, 109mpbid 234 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → -1 < (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)))
11187, 110eqbrtrrid 5104 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (0 − 1) < (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)))
112 0zd 11996 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 0 ∈ ℤ)
113 zlem1lt 12037 . . . . . . . . . . . . . . 15 ((0 ∈ ℤ ∧ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ ℤ) → (0 ≤ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ↔ (0 − 1) < (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀))))
114112, 71, 113syl2anc 586 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (0 ≤ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ↔ (0 − 1) < (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀))))
115111, 114mpbird 259 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 0 ≤ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)))
116 elnn0z 11997 . . . . . . . . . . . . 13 ((((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ ℕ0 ↔ ((((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ ℤ ∧ 0 ≤ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀))))
11771, 115, 116sylanbrc 585 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ ℕ0)
118 nn0uz 12283 . . . . . . . . . . . 12 0 = (ℤ‘0)
119117, 118eleqtrdi 2925 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ (ℤ‘0))
12016nnred 11655 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑(𝑀 + 1)) ∈ ℝ)
121 modge0 13250 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℝ ∧ (2↑𝑀) ∈ ℝ+) → 0 ≤ (𝑁 mod (2↑𝑀)))
12237, 38, 121syl2anc 586 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 0 ≤ (𝑁 mod (2↑𝑀)))
12393, 91subge02d 11234 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (0 ≤ (𝑁 mod (2↑𝑀)) ↔ ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) ≤ (𝑁 mod (2↑(𝑀 + 1)))))
124122, 123mpbid 234 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) ≤ (𝑁 mod (2↑(𝑀 + 1))))
125 modlt 13251 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ (2↑(𝑀 + 1)) ∈ ℝ+) → (𝑁 mod (2↑(𝑀 + 1))) < (2↑(𝑀 + 1)))
12637, 65, 125syl2anc 586 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 mod (2↑(𝑀 + 1))) < (2↑(𝑀 + 1)))
12794, 93, 120, 124, 126lelttrd 10800 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) < (2↑(𝑀 + 1)))
128127, 56breqtrd 5094 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) < ((2↑𝑀) · 2))
1297nnred 11655 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 2 ∈ ℝ)
13094, 129, 38ltdivmuld 12485 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) < 2 ↔ ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) < ((2↑𝑀) · 2)))
131128, 130mpbird 259 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) < 2)
132 elfzo2 13044 . . . . . . . . . . 11 ((((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ (0..^2) ↔ ((((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ (ℤ‘0) ∧ 2 ∈ ℤ ∧ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) < 2))
133119, 43, 131, 132syl3anbrc 1339 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ (0..^2))
134 fzo0to2pr 13125 . . . . . . . . . 10 (0..^2) = {0, 1}
135133, 134eleqtrdi 2925 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ {0, 1})
136 elpri 4591 . . . . . . . . 9 ((((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ {0, 1} → ((((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 0 ∨ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 1))
137135, 136syl 17 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 0 ∨ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 1))
138137ord 860 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (¬ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 0 → (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 1))
13986, 138syld 47 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑀 ∈ (bits‘𝑁) → (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 1))
140139imp 409 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑀 ∈ (bits‘𝑁)) → (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 1)
14122, 26, 32, 140diveq1d 11426 . . . 4 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑀 ∈ (bits‘𝑁)) → ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) = (2↑𝑀))
142141oveq2d 7174 . . 3 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑀 ∈ (bits‘𝑁)) → ((𝑁 mod (2↑𝑀)) + ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀)))) = ((𝑁 mod (2↑𝑀)) + (2↑𝑀)))
14320, 142eqtr3d 2860 . 2 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑀 ∈ (bits‘𝑁)) → (𝑁 mod (2↑(𝑀 + 1))) = ((𝑁 mod (2↑𝑀)) + (2↑𝑀)))
14418adantr 483 . . . 4 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ ¬ 𝑀 ∈ (bits‘𝑁)) → (𝑁 mod (2↑(𝑀 + 1))) ∈ ℂ)
14511adantr 483 . . . 4 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ ¬ 𝑀 ∈ (bits‘𝑁)) → (𝑁 mod (2↑𝑀)) ∈ ℂ)
14621adantr 483 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ ¬ 𝑀 ∈ (bits‘𝑁)) → ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) ∈ ℂ)
14751adantr 483 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ ¬ 𝑀 ∈ (bits‘𝑁)) → (2↑𝑀) ∈ ℂ)
14831adantr 483 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ ¬ 𝑀 ∈ (bits‘𝑁)) → (2↑𝑀) ≠ 0)
149 n2dvds1 15719 . . . . . . . . . 10 ¬ 2 ∥ 1
150 breq2 5072 . . . . . . . . . 10 ((((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 1 → (2 ∥ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ↔ 2 ∥ 1))
151149, 150mtbiri 329 . . . . . . . . 9 ((((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 1 → ¬ 2 ∥ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)))
152138, 151syl6 35 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (¬ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 0 → ¬ 2 ∥ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀))))
153152, 83sylibrd 261 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (¬ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 0 → 𝑀 ∈ (bits‘𝑁)))
154153con1d 147 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (¬ 𝑀 ∈ (bits‘𝑁) → (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 0))
155154imp 409 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ ¬ 𝑀 ∈ (bits‘𝑁)) → (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 0)
156146, 147, 148, 155diveq0d 11425 . . . 4 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ ¬ 𝑀 ∈ (bits‘𝑁)) → ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) = 0)
157144, 145, 156subeq0d 11007 . . 3 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ ¬ 𝑀 ∈ (bits‘𝑁)) → (𝑁 mod (2↑(𝑀 + 1))) = (𝑁 mod (2↑𝑀)))
158145addid1d 10842 . . 3 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ ¬ 𝑀 ∈ (bits‘𝑁)) → ((𝑁 mod (2↑𝑀)) + 0) = (𝑁 mod (2↑𝑀)))
159157, 158eqtr4d 2861 . 2 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ ¬ 𝑀 ∈ (bits‘𝑁)) → (𝑁 mod (2↑(𝑀 + 1))) = ((𝑁 mod (2↑𝑀)) + 0))
1602, 4, 143, 159ifbothda 4506 1 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 mod (2↑(𝑀 + 1))) = ((𝑁 mod (2↑𝑀)) + if(𝑀 ∈ (bits‘𝑁), (2↑𝑀), 0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  wne 3018  ifcif 4469  {cpr 4571   class class class wbr 5068  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544   < clt 10677  cle 10678  cmin 10872  -cneg 10873   / cdiv 11299  cn 11640  2c2 11695  0cn0 11900  cz 11984  cuz 12246  +crp 12392  ..^cfzo 13036  cfl 13163   mod cmo 13240  cexp 13432  cdvds 15609  bitscbits 15770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-dvds 15610  df-bits 15773
This theorem is referenced by:  bitsinv1  15793  smumullem  15843
  Copyright terms: Public domain W3C validator