MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsinv1lem Structured version   Visualization version   GIF version

Theorem bitsinv1lem 16321
Description: Lemma for bitsinv1 16322. (Contributed by Mario Carneiro, 22-Sep-2016.)
Assertion
Ref Expression
bitsinv1lem ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 mod (2↑(𝑀 + 1))) = ((𝑁 mod (2↑𝑀)) + if(𝑀 ∈ (bits‘𝑁), (2↑𝑀), 0)))

Proof of Theorem bitsinv1lem
StepHypRef Expression
1 oveq2 7365 . . 3 ((2↑𝑀) = if(𝑀 ∈ (bits‘𝑁), (2↑𝑀), 0) → ((𝑁 mod (2↑𝑀)) + (2↑𝑀)) = ((𝑁 mod (2↑𝑀)) + if(𝑀 ∈ (bits‘𝑁), (2↑𝑀), 0)))
21eqeq2d 2747 . 2 ((2↑𝑀) = if(𝑀 ∈ (bits‘𝑁), (2↑𝑀), 0) → ((𝑁 mod (2↑(𝑀 + 1))) = ((𝑁 mod (2↑𝑀)) + (2↑𝑀)) ↔ (𝑁 mod (2↑(𝑀 + 1))) = ((𝑁 mod (2↑𝑀)) + if(𝑀 ∈ (bits‘𝑁), (2↑𝑀), 0))))
3 oveq2 7365 . . 3 (0 = if(𝑀 ∈ (bits‘𝑁), (2↑𝑀), 0) → ((𝑁 mod (2↑𝑀)) + 0) = ((𝑁 mod (2↑𝑀)) + if(𝑀 ∈ (bits‘𝑁), (2↑𝑀), 0)))
43eqeq2d 2747 . 2 (0 = if(𝑀 ∈ (bits‘𝑁), (2↑𝑀), 0) → ((𝑁 mod (2↑(𝑀 + 1))) = ((𝑁 mod (2↑𝑀)) + 0) ↔ (𝑁 mod (2↑(𝑀 + 1))) = ((𝑁 mod (2↑𝑀)) + if(𝑀 ∈ (bits‘𝑁), (2↑𝑀), 0))))
5 simpl 483 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝑁 ∈ ℤ)
6 2nn 12226 . . . . . . . . 9 2 ∈ ℕ
76a1i 11 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 2 ∈ ℕ)
8 simpr 485 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝑀 ∈ ℕ0)
97, 8nnexpcld 14148 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑𝑀) ∈ ℕ)
105, 9zmodcld 13797 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 mod (2↑𝑀)) ∈ ℕ0)
1110nn0cnd 12475 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 mod (2↑𝑀)) ∈ ℂ)
1211adantr 481 . . . 4 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑀 ∈ (bits‘𝑁)) → (𝑁 mod (2↑𝑀)) ∈ ℂ)
13 1nn0 12429 . . . . . . . . . 10 1 ∈ ℕ0
1413a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 1 ∈ ℕ0)
158, 14nn0addcld 12477 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑀 + 1) ∈ ℕ0)
167, 15nnexpcld 14148 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑(𝑀 + 1)) ∈ ℕ)
175, 16zmodcld 13797 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 mod (2↑(𝑀 + 1))) ∈ ℕ0)
1817nn0cnd 12475 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 mod (2↑(𝑀 + 1))) ∈ ℂ)
1918adantr 481 . . . 4 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑀 ∈ (bits‘𝑁)) → (𝑁 mod (2↑(𝑀 + 1))) ∈ ℂ)
2012, 19pncan3d 11515 . . 3 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑀 ∈ (bits‘𝑁)) → ((𝑁 mod (2↑𝑀)) + ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀)))) = (𝑁 mod (2↑(𝑀 + 1))))
2118, 11subcld 11512 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) ∈ ℂ)
2221adantr 481 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑀 ∈ (bits‘𝑁)) → ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) ∈ ℂ)
236a1i 11 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑀 ∈ (bits‘𝑁)) → 2 ∈ ℕ)
24 simplr 767 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑀 ∈ (bits‘𝑁)) → 𝑀 ∈ ℕ0)
2523, 24nnexpcld 14148 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑀 ∈ (bits‘𝑁)) → (2↑𝑀) ∈ ℕ)
2625nncnd 12169 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑀 ∈ (bits‘𝑁)) → (2↑𝑀) ∈ ℂ)
27 2cnd 12231 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 2 ∈ ℂ)
28 2ne0 12257 . . . . . . . 8 2 ≠ 0
2928a1i 11 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 2 ≠ 0)
308nn0zd 12525 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝑀 ∈ ℤ)
3127, 29, 30expne0d 14057 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑𝑀) ≠ 0)
3231adantr 481 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑀 ∈ (bits‘𝑁)) → (2↑𝑀) ≠ 0)
33 z0even 16249 . . . . . . . . . 10 2 ∥ 0
34 id 22 . . . . . . . . . 10 ((((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 0 → (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 0)
3533, 34breqtrrid 5143 . . . . . . . . 9 ((((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 0 → 2 ∥ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)))
36 bitsval2 16305 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑀 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀)))))
375zred 12607 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝑁 ∈ ℝ)
389nnrpd 12955 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑𝑀) ∈ ℝ+)
39 moddiffl 13787 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ (2↑𝑀) ∈ ℝ+) → ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = (⌊‘(𝑁 / (2↑𝑀))))
4037, 38, 39syl2anc 584 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = (⌊‘(𝑁 / (2↑𝑀))))
4140breq2d 5117 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2 ∥ ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ↔ 2 ∥ (⌊‘(𝑁 / (2↑𝑀)))))
42 2z 12535 . . . . . . . . . . . . . . 15 2 ∈ ℤ
4342a1i 11 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 2 ∈ ℤ)
44 moddifz 13788 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ (2↑𝑀) ∈ ℝ+) → ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ ℤ)
4537, 38, 44syl2anc 584 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ ℤ)
465zcnd 12608 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝑁 ∈ ℂ)
4746, 11, 18nnncan1d 11546 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑁 − (𝑁 mod (2↑𝑀))) − (𝑁 − (𝑁 mod (2↑(𝑀 + 1))))) = ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))))
4847oveq1d 7372 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (((𝑁 − (𝑁 mod (2↑𝑀))) − (𝑁 − (𝑁 mod (2↑(𝑀 + 1))))) / (2↑𝑀)) = (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)))
4946, 11subcld 11512 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 − (𝑁 mod (2↑𝑀))) ∈ ℂ)
5046, 18subcld 11512 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) ∈ ℂ)
519nncnd 12169 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑𝑀) ∈ ℂ)
5249, 50, 51, 31divsubdird 11970 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (((𝑁 − (𝑁 mod (2↑𝑀))) − (𝑁 − (𝑁 mod (2↑(𝑀 + 1))))) / (2↑𝑀)) = (((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) − ((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) / (2↑𝑀))))
5348, 52eqtr3d 2778 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = (((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) − ((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) / (2↑𝑀))))
5427, 50mulcomd 11176 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2 · (𝑁 − (𝑁 mod (2↑(𝑀 + 1))))) = ((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) · 2))
5527, 51mulcomd 11176 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2 · (2↑𝑀)) = ((2↑𝑀) · 2))
5627, 8expp1d 14052 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑(𝑀 + 1)) = ((2↑𝑀) · 2))
5755, 56eqtr4d 2779 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2 · (2↑𝑀)) = (2↑(𝑀 + 1)))
5854, 57oveq12d 7375 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((2 · (𝑁 − (𝑁 mod (2↑(𝑀 + 1))))) / (2 · (2↑𝑀))) = (((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) · 2) / (2↑(𝑀 + 1))))
5950, 51, 27, 31, 29divcan5d 11957 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((2 · (𝑁 − (𝑁 mod (2↑(𝑀 + 1))))) / (2 · (2↑𝑀))) = ((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) / (2↑𝑀)))
6016nncnd 12169 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑(𝑀 + 1)) ∈ ℂ)
6130peano2zd 12610 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑀 + 1) ∈ ℤ)
6227, 29, 61expne0d 14057 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑(𝑀 + 1)) ≠ 0)
6350, 27, 60, 62div23d 11968 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) · 2) / (2↑(𝑀 + 1))) = (((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) / (2↑(𝑀 + 1))) · 2))
6458, 59, 633eqtr3d 2784 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) / (2↑𝑀)) = (((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) / (2↑(𝑀 + 1))) · 2))
6516nnrpd 12955 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑(𝑀 + 1)) ∈ ℝ+)
66 moddifz 13788 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℝ ∧ (2↑(𝑀 + 1)) ∈ ℝ+) → ((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) / (2↑(𝑀 + 1))) ∈ ℤ)
6737, 65, 66syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) / (2↑(𝑀 + 1))) ∈ ℤ)
6867, 43zmulcld 12613 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) / (2↑(𝑀 + 1))) · 2) ∈ ℤ)
6964, 68eqeltrd 2838 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) / (2↑𝑀)) ∈ ℤ)
7045, 69zsubcld 12612 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) − ((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) / (2↑𝑀))) ∈ ℤ)
7153, 70eqeltrd 2838 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ ℤ)
72 dvdsmul2 16161 . . . . . . . . . . . . . . . 16 ((((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) / (2↑(𝑀 + 1))) ∈ ℤ ∧ 2 ∈ ℤ) → 2 ∥ (((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) / (2↑(𝑀 + 1))) · 2))
7367, 43, 72syl2anc 584 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 2 ∥ (((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) / (2↑(𝑀 + 1))) · 2))
7446, 18, 11nnncan2d 11547 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑁 − (𝑁 mod (2↑𝑀))) − ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀)))) = (𝑁 − (𝑁 mod (2↑(𝑀 + 1)))))
7574oveq1d 7372 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (((𝑁 − (𝑁 mod (2↑𝑀))) − ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀)))) / (2↑𝑀)) = ((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) / (2↑𝑀)))
7649, 21, 51, 31divsubdird 11970 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (((𝑁 − (𝑁 mod (2↑𝑀))) − ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀)))) / (2↑𝑀)) = (((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) − (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀))))
7775, 76, 643eqtr3d 2784 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) − (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀))) = (((𝑁 − (𝑁 mod (2↑(𝑀 + 1)))) / (2↑(𝑀 + 1))) · 2))
7873, 77breqtrrd 5133 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 2 ∥ (((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) − (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀))))
79 dvdssub2 16183 . . . . . . . . . . . . . 14 (((2 ∈ ℤ ∧ ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ ℤ ∧ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ ℤ) ∧ 2 ∥ (((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) − (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)))) → (2 ∥ ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ↔ 2 ∥ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀))))
8043, 45, 71, 78, 79syl31anc 1373 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2 ∥ ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ↔ 2 ∥ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀))))
8141, 80bitr3d 280 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2 ∥ (⌊‘(𝑁 / (2↑𝑀))) ↔ 2 ∥ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀))))
8281notbid 317 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀))) ↔ ¬ 2 ∥ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀))))
8336, 82bitrd 278 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑀 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀))))
8483con2bid 354 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2 ∥ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ↔ ¬ 𝑀 ∈ (bits‘𝑁)))
8535, 84imbitrid 243 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 0 → ¬ 𝑀 ∈ (bits‘𝑁)))
8685con2d 134 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑀 ∈ (bits‘𝑁) → ¬ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 0))
87 df-neg 11388 . . . . . . . . . . . . . . 15 -1 = (0 − 1)
8851mulm1d 11607 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (-1 · (2↑𝑀)) = -(2↑𝑀))
899nnred 12168 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑𝑀) ∈ ℝ)
9089renegcld 11582 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → -(2↑𝑀) ∈ ℝ)
9137, 38modcld 13780 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 mod (2↑𝑀)) ∈ ℝ)
9291renegcld 11582 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → -(𝑁 mod (2↑𝑀)) ∈ ℝ)
9337, 65modcld 13780 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 mod (2↑(𝑀 + 1))) ∈ ℝ)
9493, 91resubcld 11583 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) ∈ ℝ)
95 modlt 13785 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℝ ∧ (2↑𝑀) ∈ ℝ+) → (𝑁 mod (2↑𝑀)) < (2↑𝑀))
9637, 38, 95syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 mod (2↑𝑀)) < (2↑𝑀))
9791, 89ltnegd 11733 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑁 mod (2↑𝑀)) < (2↑𝑀) ↔ -(2↑𝑀) < -(𝑁 mod (2↑𝑀))))
9896, 97mpbid 231 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → -(2↑𝑀) < -(𝑁 mod (2↑𝑀)))
99 df-neg 11388 . . . . . . . . . . . . . . . . . . 19 -(𝑁 mod (2↑𝑀)) = (0 − (𝑁 mod (2↑𝑀)))
100 0red 11158 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 0 ∈ ℝ)
101 modge0 13784 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℝ ∧ (2↑(𝑀 + 1)) ∈ ℝ+) → 0 ≤ (𝑁 mod (2↑(𝑀 + 1))))
10237, 65, 101syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 0 ≤ (𝑁 mod (2↑(𝑀 + 1))))
103100, 93, 91, 102lesub1dd 11771 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (0 − (𝑁 mod (2↑𝑀))) ≤ ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))))
10499, 103eqbrtrid 5140 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → -(𝑁 mod (2↑𝑀)) ≤ ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))))
10590, 92, 94, 98, 104ltletrd 11315 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → -(2↑𝑀) < ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))))
10688, 105eqbrtrd 5127 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (-1 · (2↑𝑀)) < ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))))
107 1red 11156 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 1 ∈ ℝ)
108107renegcld 11582 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → -1 ∈ ℝ)
109108, 94, 38ltmuldivd 13004 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((-1 · (2↑𝑀)) < ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) ↔ -1 < (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀))))
110106, 109mpbid 231 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → -1 < (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)))
11187, 110eqbrtrrid 5141 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (0 − 1) < (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)))
112 0zd 12511 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 0 ∈ ℤ)
113 zlem1lt 12555 . . . . . . . . . . . . . . 15 ((0 ∈ ℤ ∧ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ ℤ) → (0 ≤ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ↔ (0 − 1) < (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀))))
114112, 71, 113syl2anc 584 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (0 ≤ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ↔ (0 − 1) < (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀))))
115111, 114mpbird 256 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 0 ≤ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)))
116 elnn0z 12512 . . . . . . . . . . . . 13 ((((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ ℕ0 ↔ ((((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ ℤ ∧ 0 ≤ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀))))
11771, 115, 116sylanbrc 583 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ ℕ0)
118 nn0uz 12805 . . . . . . . . . . . 12 0 = (ℤ‘0)
119117, 118eleqtrdi 2848 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ (ℤ‘0))
12016nnred 12168 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑(𝑀 + 1)) ∈ ℝ)
121 modge0 13784 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℝ ∧ (2↑𝑀) ∈ ℝ+) → 0 ≤ (𝑁 mod (2↑𝑀)))
12237, 38, 121syl2anc 584 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 0 ≤ (𝑁 mod (2↑𝑀)))
12393, 91subge02d 11747 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (0 ≤ (𝑁 mod (2↑𝑀)) ↔ ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) ≤ (𝑁 mod (2↑(𝑀 + 1)))))
124122, 123mpbid 231 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) ≤ (𝑁 mod (2↑(𝑀 + 1))))
125 modlt 13785 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ (2↑(𝑀 + 1)) ∈ ℝ+) → (𝑁 mod (2↑(𝑀 + 1))) < (2↑(𝑀 + 1)))
12637, 65, 125syl2anc 584 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 mod (2↑(𝑀 + 1))) < (2↑(𝑀 + 1)))
12794, 93, 120, 124, 126lelttrd 11313 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) < (2↑(𝑀 + 1)))
128127, 56breqtrd 5131 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) < ((2↑𝑀) · 2))
1297nnred 12168 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 2 ∈ ℝ)
13094, 129, 38ltdivmuld 13008 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) < 2 ↔ ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) < ((2↑𝑀) · 2)))
131128, 130mpbird 256 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) < 2)
132 elfzo2 13575 . . . . . . . . . . 11 ((((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ (0..^2) ↔ ((((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ (ℤ‘0) ∧ 2 ∈ ℤ ∧ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) < 2))
133119, 43, 131, 132syl3anbrc 1343 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ (0..^2))
134 fzo0to2pr 13657 . . . . . . . . . 10 (0..^2) = {0, 1}
135133, 134eleqtrdi 2848 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ {0, 1})
136 elpri 4608 . . . . . . . . 9 ((((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ {0, 1} → ((((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 0 ∨ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 1))
137135, 136syl 17 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 0 ∨ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 1))
138137ord 862 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (¬ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 0 → (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 1))
13986, 138syld 47 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑀 ∈ (bits‘𝑁) → (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 1))
140139imp 407 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑀 ∈ (bits‘𝑁)) → (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 1)
14122, 26, 32, 140diveq1d 11939 . . . 4 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑀 ∈ (bits‘𝑁)) → ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) = (2↑𝑀))
142141oveq2d 7373 . . 3 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑀 ∈ (bits‘𝑁)) → ((𝑁 mod (2↑𝑀)) + ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀)))) = ((𝑁 mod (2↑𝑀)) + (2↑𝑀)))
14320, 142eqtr3d 2778 . 2 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑀 ∈ (bits‘𝑁)) → (𝑁 mod (2↑(𝑀 + 1))) = ((𝑁 mod (2↑𝑀)) + (2↑𝑀)))
14418adantr 481 . . . 4 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ ¬ 𝑀 ∈ (bits‘𝑁)) → (𝑁 mod (2↑(𝑀 + 1))) ∈ ℂ)
14511adantr 481 . . . 4 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ ¬ 𝑀 ∈ (bits‘𝑁)) → (𝑁 mod (2↑𝑀)) ∈ ℂ)
14621adantr 481 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ ¬ 𝑀 ∈ (bits‘𝑁)) → ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) ∈ ℂ)
14751adantr 481 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ ¬ 𝑀 ∈ (bits‘𝑁)) → (2↑𝑀) ∈ ℂ)
14831adantr 481 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ ¬ 𝑀 ∈ (bits‘𝑁)) → (2↑𝑀) ≠ 0)
149 n2dvds1 16250 . . . . . . . . . 10 ¬ 2 ∥ 1
150 breq2 5109 . . . . . . . . . 10 ((((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 1 → (2 ∥ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ↔ 2 ∥ 1))
151149, 150mtbiri 326 . . . . . . . . 9 ((((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 1 → ¬ 2 ∥ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)))
152138, 151syl6 35 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (¬ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 0 → ¬ 2 ∥ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀))))
153152, 83sylibrd 258 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (¬ (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 0 → 𝑀 ∈ (bits‘𝑁)))
154153con1d 145 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (¬ 𝑀 ∈ (bits‘𝑁) → (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 0))
155154imp 407 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ ¬ 𝑀 ∈ (bits‘𝑁)) → (((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) = 0)
156146, 147, 148, 155diveq0d 11938 . . . 4 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ ¬ 𝑀 ∈ (bits‘𝑁)) → ((𝑁 mod (2↑(𝑀 + 1))) − (𝑁 mod (2↑𝑀))) = 0)
157144, 145, 156subeq0d 11520 . . 3 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ ¬ 𝑀 ∈ (bits‘𝑁)) → (𝑁 mod (2↑(𝑀 + 1))) = (𝑁 mod (2↑𝑀)))
158145addid1d 11355 . . 3 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ ¬ 𝑀 ∈ (bits‘𝑁)) → ((𝑁 mod (2↑𝑀)) + 0) = (𝑁 mod (2↑𝑀)))
159157, 158eqtr4d 2779 . 2 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ ¬ 𝑀 ∈ (bits‘𝑁)) → (𝑁 mod (2↑(𝑀 + 1))) = ((𝑁 mod (2↑𝑀)) + 0))
1602, 4, 143, 159ifbothda 4524 1 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 mod (2↑(𝑀 + 1))) = ((𝑁 mod (2↑𝑀)) + if(𝑀 ∈ (bits‘𝑁), (2↑𝑀), 0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2943  ifcif 4486  {cpr 4588   class class class wbr 5105  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cmin 11385  -cneg 11386   / cdiv 11812  cn 12153  2c2 12208  0cn0 12413  cz 12499  cuz 12763  +crp 12915  ..^cfzo 13567  cfl 13695   mod cmo 13774  cexp 13967  cdvds 16136  bitscbits 16299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-dvds 16137  df-bits 16302
This theorem is referenced by:  bitsinv1  16322  smumullem  16372
  Copyright terms: Public domain W3C validator