![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemc | Structured version Visualization version GIF version |
Description: Lemma C in [Crawley] p. 113. (Contributed by NM, 26-May-2012.) |
Ref | Expression |
---|---|
cdlemc3.l | ⊢ ≤ = (le‘𝐾) |
cdlemc3.j | ⊢ ∨ = (join‘𝐾) |
cdlemc3.m | ⊢ ∧ = (meet‘𝐾) |
cdlemc3.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemc3.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemc3.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemc3.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
cdlemc | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃))) → (𝐹‘𝑄) = ((𝑄 ∨ (𝑅‘𝐹)) ∧ ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1246 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃))) ∧ (𝐹‘𝑃) = 𝑃) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | simpl2 1248 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃))) ∧ (𝐹‘𝑃) = 𝑃) → (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) | |
3 | simpr 479 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃))) ∧ (𝐹‘𝑃) = 𝑃) → (𝐹‘𝑃) = 𝑃) | |
4 | cdlemc3.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
5 | cdlemc3.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
6 | cdlemc3.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
7 | cdlemc3.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
8 | cdlemc3.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
9 | cdlemc3.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
10 | cdlemc3.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
11 | 4, 5, 6, 7, 8, 9, 10 | cdlemc6 36270 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹‘𝑃) = 𝑃) → (𝐹‘𝑄) = ((𝑄 ∨ (𝑅‘𝐹)) ∧ ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)))) |
12 | 1, 2, 3, 11 | syl3anc 1494 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃))) ∧ (𝐹‘𝑃) = 𝑃) → (𝐹‘𝑄) = ((𝑄 ∨ (𝑅‘𝐹)) ∧ ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)))) |
13 | simpl1 1246 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃))) ∧ (𝐹‘𝑃) ≠ 𝑃) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
14 | simpl2 1248 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃))) ∧ (𝐹‘𝑃) ≠ 𝑃) → (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) | |
15 | simpl3 1250 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃))) ∧ (𝐹‘𝑃) ≠ 𝑃) → ¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃))) | |
16 | simpr 479 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃))) ∧ (𝐹‘𝑃) ≠ 𝑃) → (𝐹‘𝑃) ≠ 𝑃) | |
17 | 4, 5, 6, 7, 8, 9, 10 | cdlemc5 36269 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝐹‘𝑄) = ((𝑄 ∨ (𝑅‘𝐹)) ∧ ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)))) |
18 | 13, 14, 15, 16, 17 | syl112anc 1497 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃))) ∧ (𝐹‘𝑃) ≠ 𝑃) → (𝐹‘𝑄) = ((𝑄 ∨ (𝑅‘𝐹)) ∧ ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)))) |
19 | 12, 18 | pm2.61dane 3086 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃))) → (𝐹‘𝑄) = ((𝑄 ∨ (𝑅‘𝐹)) ∧ ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 ∧ w3a 1111 = wceq 1656 ∈ wcel 2164 ≠ wne 2999 class class class wbr 4875 ‘cfv 6127 (class class class)co 6910 lecple 16319 joincjn 17304 meetcmee 17305 Atomscatm 35337 HLchlt 35424 LHypclh 36058 LTrncltrn 36175 trLctrl 36232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-iun 4744 df-iin 4745 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-1st 7433 df-2nd 7434 df-map 8129 df-proset 17288 df-poset 17306 df-plt 17318 df-lub 17334 df-glb 17335 df-join 17336 df-meet 17337 df-p0 17399 df-p1 17400 df-lat 17406 df-clat 17468 df-oposet 35250 df-ol 35252 df-oml 35253 df-covers 35340 df-ats 35341 df-atl 35372 df-cvlat 35396 df-hlat 35425 df-llines 35572 df-psubsp 35577 df-pmap 35578 df-padd 35870 df-lhyp 36062 df-laut 36063 df-ldil 36178 df-ltrn 36179 df-trl 36233 |
This theorem is referenced by: cdlemd6 36277 cdlemg4e 36688 cdlemg43 36804 |
Copyright terms: Public domain | W3C validator |