Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemc Structured version   Visualization version   GIF version

Theorem cdlemc 39670
Description: Lemma C in [Crawley] p. 113. (Contributed by NM, 26-May-2012.)
Hypotheses
Ref Expression
cdlemc3.l ≀ = (leβ€˜πΎ)
cdlemc3.j ∨ = (joinβ€˜πΎ)
cdlemc3.m ∧ = (meetβ€˜πΎ)
cdlemc3.a 𝐴 = (Atomsβ€˜πΎ)
cdlemc3.h 𝐻 = (LHypβ€˜πΎ)
cdlemc3.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdlemc3.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
cdlemc (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))) β†’ (πΉβ€˜π‘„) = ((𝑄 ∨ (π‘…β€˜πΉ)) ∧ ((πΉβ€˜π‘ƒ) ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š))))

Proof of Theorem cdlemc
StepHypRef Expression
1 simpl1 1189 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
2 simpl2 1190 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)))
3 simpr 484 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ (πΉβ€˜π‘ƒ) = 𝑃)
4 cdlemc3.l . . . 4 ≀ = (leβ€˜πΎ)
5 cdlemc3.j . . . 4 ∨ = (joinβ€˜πΎ)
6 cdlemc3.m . . . 4 ∧ = (meetβ€˜πΎ)
7 cdlemc3.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
8 cdlemc3.h . . . 4 𝐻 = (LHypβ€˜πΎ)
9 cdlemc3.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
10 cdlemc3.r . . . 4 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
114, 5, 6, 7, 8, 9, 10cdlemc6 39669 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ (πΉβ€˜π‘„) = ((𝑄 ∨ (π‘…β€˜πΉ)) ∧ ((πΉβ€˜π‘ƒ) ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š))))
121, 2, 3, 11syl3anc 1369 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ (πΉβ€˜π‘„) = ((𝑄 ∨ (π‘…β€˜πΉ)) ∧ ((πΉβ€˜π‘ƒ) ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š))))
13 simpl1 1189 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
14 simpl2 1190 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)))
15 simpl3 1191 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ)))
16 simpr 484 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ (πΉβ€˜π‘ƒ) β‰  𝑃)
174, 5, 6, 7, 8, 9, 10cdlemc5 39668 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ)) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃)) β†’ (πΉβ€˜π‘„) = ((𝑄 ∨ (π‘…β€˜πΉ)) ∧ ((πΉβ€˜π‘ƒ) ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š))))
1813, 14, 15, 16, 17syl112anc 1372 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ (πΉβ€˜π‘„) = ((𝑄 ∨ (π‘…β€˜πΉ)) ∧ ((πΉβ€˜π‘ƒ) ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š))))
1912, 18pm2.61dane 3026 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))) β†’ (πΉβ€˜π‘„) = ((𝑄 ∨ (π‘…β€˜πΉ)) ∧ ((πΉβ€˜π‘ƒ) ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   ∧ w3a 1085   = wceq 1534   ∈ wcel 2099   β‰  wne 2937   class class class wbr 5148  β€˜cfv 6548  (class class class)co 7420  lecple 17240  joincjn 18303  meetcmee 18304  Atomscatm 38735  HLchlt 38822  LHypclh 39457  LTrncltrn 39574  trLctrl 39631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-1st 7993  df-2nd 7994  df-map 8847  df-proset 18287  df-poset 18305  df-plt 18322  df-lub 18338  df-glb 18339  df-join 18340  df-meet 18341  df-p0 18417  df-p1 18418  df-lat 18424  df-clat 18491  df-oposet 38648  df-ol 38650  df-oml 38651  df-covers 38738  df-ats 38739  df-atl 38770  df-cvlat 38794  df-hlat 38823  df-llines 38971  df-psubsp 38976  df-pmap 38977  df-padd 39269  df-lhyp 39461  df-laut 39462  df-ldil 39577  df-ltrn 39578  df-trl 39632
This theorem is referenced by:  cdlemd6  39676  cdlemg4e  40087  cdlemg43  40203
  Copyright terms: Public domain W3C validator