| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemc | Structured version Visualization version GIF version | ||
| Description: Lemma C in [Crawley] p. 113. (Contributed by NM, 26-May-2012.) |
| Ref | Expression |
|---|---|
| cdlemc3.l | ⊢ ≤ = (le‘𝐾) |
| cdlemc3.j | ⊢ ∨ = (join‘𝐾) |
| cdlemc3.m | ⊢ ∧ = (meet‘𝐾) |
| cdlemc3.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdlemc3.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdlemc3.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| cdlemc3.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| cdlemc | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃))) → (𝐹‘𝑄) = ((𝑄 ∨ (𝑅‘𝐹)) ∧ ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1192 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃))) ∧ (𝐹‘𝑃) = 𝑃) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 2 | simpl2 1193 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃))) ∧ (𝐹‘𝑃) = 𝑃) → (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) | |
| 3 | simpr 484 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃))) ∧ (𝐹‘𝑃) = 𝑃) → (𝐹‘𝑃) = 𝑃) | |
| 4 | cdlemc3.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 5 | cdlemc3.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 6 | cdlemc3.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 7 | cdlemc3.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 8 | cdlemc3.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 9 | cdlemc3.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 10 | cdlemc3.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 11 | 4, 5, 6, 7, 8, 9, 10 | cdlemc6 40190 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹‘𝑃) = 𝑃) → (𝐹‘𝑄) = ((𝑄 ∨ (𝑅‘𝐹)) ∧ ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)))) |
| 12 | 1, 2, 3, 11 | syl3anc 1373 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃))) ∧ (𝐹‘𝑃) = 𝑃) → (𝐹‘𝑄) = ((𝑄 ∨ (𝑅‘𝐹)) ∧ ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)))) |
| 13 | simpl1 1192 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃))) ∧ (𝐹‘𝑃) ≠ 𝑃) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 14 | simpl2 1193 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃))) ∧ (𝐹‘𝑃) ≠ 𝑃) → (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) | |
| 15 | simpl3 1194 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃))) ∧ (𝐹‘𝑃) ≠ 𝑃) → ¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃))) | |
| 16 | simpr 484 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃))) ∧ (𝐹‘𝑃) ≠ 𝑃) → (𝐹‘𝑃) ≠ 𝑃) | |
| 17 | 4, 5, 6, 7, 8, 9, 10 | cdlemc5 40189 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)) ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝐹‘𝑄) = ((𝑄 ∨ (𝑅‘𝐹)) ∧ ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)))) |
| 18 | 13, 14, 15, 16, 17 | syl112anc 1376 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃))) ∧ (𝐹‘𝑃) ≠ 𝑃) → (𝐹‘𝑄) = ((𝑄 ∨ (𝑅‘𝐹)) ∧ ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)))) |
| 19 | 12, 18 | pm2.61dane 3012 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃))) → (𝐹‘𝑄) = ((𝑄 ∨ (𝑅‘𝐹)) ∧ ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 lecple 17227 joincjn 18272 meetcmee 18273 Atomscatm 39256 HLchlt 39343 LHypclh 39978 LTrncltrn 40095 trLctrl 40152 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-map 8801 df-proset 18255 df-poset 18274 df-plt 18289 df-lub 18305 df-glb 18306 df-join 18307 df-meet 18308 df-p0 18384 df-p1 18385 df-lat 18391 df-clat 18458 df-oposet 39169 df-ol 39171 df-oml 39172 df-covers 39259 df-ats 39260 df-atl 39291 df-cvlat 39315 df-hlat 39344 df-llines 39492 df-psubsp 39497 df-pmap 39498 df-padd 39790 df-lhyp 39982 df-laut 39983 df-ldil 40098 df-ltrn 40099 df-trl 40153 |
| This theorem is referenced by: cdlemd6 40197 cdlemg4e 40608 cdlemg43 40724 |
| Copyright terms: Public domain | W3C validator |