Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemc Structured version   Visualization version   GIF version

Theorem cdlemc 39579
Description: Lemma C in [Crawley] p. 113. (Contributed by NM, 26-May-2012.)
Hypotheses
Ref Expression
cdlemc3.l ≀ = (leβ€˜πΎ)
cdlemc3.j ∨ = (joinβ€˜πΎ)
cdlemc3.m ∧ = (meetβ€˜πΎ)
cdlemc3.a 𝐴 = (Atomsβ€˜πΎ)
cdlemc3.h 𝐻 = (LHypβ€˜πΎ)
cdlemc3.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdlemc3.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
cdlemc (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))) β†’ (πΉβ€˜π‘„) = ((𝑄 ∨ (π‘…β€˜πΉ)) ∧ ((πΉβ€˜π‘ƒ) ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š))))

Proof of Theorem cdlemc
StepHypRef Expression
1 simpl1 1188 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
2 simpl2 1189 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)))
3 simpr 484 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ (πΉβ€˜π‘ƒ) = 𝑃)
4 cdlemc3.l . . . 4 ≀ = (leβ€˜πΎ)
5 cdlemc3.j . . . 4 ∨ = (joinβ€˜πΎ)
6 cdlemc3.m . . . 4 ∧ = (meetβ€˜πΎ)
7 cdlemc3.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
8 cdlemc3.h . . . 4 𝐻 = (LHypβ€˜πΎ)
9 cdlemc3.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
10 cdlemc3.r . . . 4 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
114, 5, 6, 7, 8, 9, 10cdlemc6 39578 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ (πΉβ€˜π‘„) = ((𝑄 ∨ (π‘…β€˜πΉ)) ∧ ((πΉβ€˜π‘ƒ) ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š))))
121, 2, 3, 11syl3anc 1368 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ (πΉβ€˜π‘„) = ((𝑄 ∨ (π‘…β€˜πΉ)) ∧ ((πΉβ€˜π‘ƒ) ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š))))
13 simpl1 1188 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
14 simpl2 1189 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)))
15 simpl3 1190 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ)))
16 simpr 484 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ (πΉβ€˜π‘ƒ) β‰  𝑃)
174, 5, 6, 7, 8, 9, 10cdlemc5 39577 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ)) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃)) β†’ (πΉβ€˜π‘„) = ((𝑄 ∨ (π‘…β€˜πΉ)) ∧ ((πΉβ€˜π‘ƒ) ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š))))
1813, 14, 15, 16, 17syl112anc 1371 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ (πΉβ€˜π‘„) = ((𝑄 ∨ (π‘…β€˜πΉ)) ∧ ((πΉβ€˜π‘ƒ) ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š))))
1912, 18pm2.61dane 3023 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ Β¬ 𝑄 ≀ (𝑃 ∨ (πΉβ€˜π‘ƒ))) β†’ (πΉβ€˜π‘„) = ((𝑄 ∨ (π‘…β€˜πΉ)) ∧ ((πΉβ€˜π‘ƒ) ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2934   class class class wbr 5141  β€˜cfv 6536  (class class class)co 7404  lecple 17211  joincjn 18274  meetcmee 18275  Atomscatm 38644  HLchlt 38731  LHypclh 39366  LTrncltrn 39483  trLctrl 39540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-1st 7971  df-2nd 7972  df-map 8821  df-proset 18258  df-poset 18276  df-plt 18293  df-lub 18309  df-glb 18310  df-join 18311  df-meet 18312  df-p0 18388  df-p1 18389  df-lat 18395  df-clat 18462  df-oposet 38557  df-ol 38559  df-oml 38560  df-covers 38647  df-ats 38648  df-atl 38679  df-cvlat 38703  df-hlat 38732  df-llines 38880  df-psubsp 38885  df-pmap 38886  df-padd 39178  df-lhyp 39370  df-laut 39371  df-ldil 39486  df-ltrn 39487  df-trl 39541
This theorem is referenced by:  cdlemd6  39585  cdlemg4e  39996  cdlemg43  40112
  Copyright terms: Public domain W3C validator