Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme32snb Structured version   Visualization version   GIF version

Theorem cdleme32snb 36510
Description: Show closure of 𝑅 / 𝑠𝑁. (Contributed by NM, 1-Mar-2013.)
Hypotheses
Ref Expression
cdleme32.b 𝐵 = (Base‘𝐾)
cdleme32.l = (le‘𝐾)
cdleme32.j = (join‘𝐾)
cdleme32.m = (meet‘𝐾)
cdleme32.a 𝐴 = (Atoms‘𝐾)
cdleme32.h 𝐻 = (LHyp‘𝐾)
cdleme32.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme32.c 𝐶 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
cdleme32.d 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdleme32.e 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
cdleme32.i 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸))
cdleme32.n 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐶)
Assertion
Ref Expression
cdleme32snb ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑅 / 𝑠𝑁𝐵)
Distinct variable groups:   𝑡,𝑠,𝑦,𝐴   𝐵,𝑠,𝑡,𝑦   𝑦,𝐶   𝐷,𝑠,𝑦   𝑦,𝐸   𝐻,𝑠,𝑡   ,𝑠,𝑡,𝑦   𝐾,𝑠,𝑡   ,𝑠,𝑡,𝑦   ,𝑠,𝑡,𝑦   𝑃,𝑠,𝑡,𝑦   𝑄,𝑠,𝑡,𝑦   𝑈,𝑠,𝑡,𝑦   𝑊,𝑠,𝑡,𝑦   𝑅,𝑠,𝑡,𝑦   𝑦,𝐻   𝑦,𝐾
Allowed substitution hints:   𝐶(𝑡,𝑠)   𝐷(𝑡)   𝐸(𝑡,𝑠)   𝐼(𝑦,𝑡,𝑠)   𝑁(𝑦,𝑡,𝑠)

Proof of Theorem cdleme32snb
StepHypRef Expression
1 cdleme32.b . . . 4 𝐵 = (Base‘𝐾)
2 cdleme32.l . . . 4 = (le‘𝐾)
3 cdleme32.j . . . 4 = (join‘𝐾)
4 cdleme32.m . . . 4 = (meet‘𝐾)
5 cdleme32.a . . . 4 𝐴 = (Atoms‘𝐾)
6 cdleme32.h . . . 4 𝐻 = (LHyp‘𝐾)
7 cdleme32.u . . . 4 𝑈 = ((𝑃 𝑄) 𝑊)
8 cdleme32.c . . . 4 𝐶 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
9 cdleme32.d . . . 4 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
10 cdleme32.e . . . 4 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
11 cdleme32.i . . . 4 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸))
12 cdleme32.n . . . 4 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐶)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12cdleme32snaw 36509 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 / 𝑠𝑁𝐴 ∧ ¬ 𝑅 / 𝑠𝑁 𝑊))
1413simpld 490 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑅 / 𝑠𝑁𝐴)
151, 5atbase 35363 . 2 (𝑅 / 𝑠𝑁𝐴𝑅 / 𝑠𝑁𝐵)
1614, 15syl 17 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑅 / 𝑠𝑁𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386  w3a 1113   = wceq 1658  wcel 2166  wne 2998  wral 3116  csb 3756  ifcif 4305   class class class wbr 4872  cfv 6122  crio 6864  (class class class)co 6904  Basecbs 16221  lecple 16311  joincjn 17296  meetcmee 17297  Atomscatm 35337  HLchlt 35424  LHypclh 36058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-rep 4993  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126  ax-un 7208  ax-riotaBAD 35027
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-nel 3102  df-ral 3121  df-rex 3122  df-reu 3123  df-rmo 3124  df-rab 3125  df-v 3415  df-sbc 3662  df-csb 3757  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-nul 4144  df-if 4306  df-pw 4379  df-sn 4397  df-pr 4399  df-op 4403  df-uni 4658  df-iun 4741  df-iin 4742  df-br 4873  df-opab 4935  df-mpt 4952  df-id 5249  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-f1 6127  df-fo 6128  df-f1o 6129  df-fv 6130  df-riota 6865  df-ov 6907  df-oprab 6908  df-mpt2 6909  df-1st 7427  df-2nd 7428  df-undef 7663  df-proset 17280  df-poset 17298  df-plt 17310  df-lub 17326  df-glb 17327  df-join 17328  df-meet 17329  df-p0 17391  df-p1 17392  df-lat 17398  df-clat 17460  df-oposet 35250  df-ol 35252  df-oml 35253  df-covers 35340  df-ats 35341  df-atl 35372  df-cvlat 35396  df-hlat 35425  df-llines 35572  df-lplanes 35573  df-lvols 35574  df-lines 35575  df-psubsp 35577  df-pmap 35578  df-padd 35870  df-lhyp 36062
This theorem is referenced by:  cdleme32fva  36511
  Copyright terms: Public domain W3C validator