Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme43fsv1sn Structured version   Visualization version   GIF version

Theorem cdleme43fsv1sn 37662
Description: Value of 𝑅 / 𝑠𝑁 when 𝑅 (𝑃 𝑄). (Contributed by NM, 30-Mar-2013.)
Hypotheses
Ref Expression
cdlemefs32.b 𝐵 = (Base‘𝐾)
cdlemefs32.l = (le‘𝐾)
cdlemefs32.j = (join‘𝐾)
cdlemefs32.m = (meet‘𝐾)
cdlemefs32.a 𝐴 = (Atoms‘𝐾)
cdlemefs32.h 𝐻 = (LHyp‘𝐾)
cdlemefs32.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdlemefs32.d 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdlemefs32.e 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
cdlemefs32.i 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸))
cdlemefs32.n 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐶)
cdleme43fs.y 𝑌 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
cdleme43fs.z 𝑍 = ((𝑃 𝑄) (𝑌 ((𝑅 𝑆) 𝑊)))
Assertion
Ref Expression
cdleme43fsv1sn ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑅 / 𝑠𝑁 = 𝑍)
Distinct variable groups:   𝑡,𝑠,𝑦,𝐴   𝐵,𝑠,𝑡,𝑦   𝑦,𝐷   𝑦,𝐸   𝐻,𝑠,𝑡,𝑦   ,𝑠,𝑡,𝑦   𝐾,𝑠,𝑡,𝑦   ,𝑠,𝑡,𝑦   ,𝑠,𝑡,𝑦   𝑃,𝑠,𝑡,𝑦   𝑄,𝑠,𝑡,𝑦   𝑅,𝑠,𝑡,𝑦   𝑡,𝑈,𝑦   𝑊,𝑠,𝑡,𝑦   𝑦,𝑌   𝐷,𝑠   𝑡,𝑆,𝑦   𝑡,𝑍
Allowed substitution hints:   𝐶(𝑦,𝑡,𝑠)   𝐷(𝑡)   𝑆(𝑠)   𝑈(𝑠)   𝐸(𝑡,𝑠)   𝐼(𝑦,𝑡,𝑠)   𝑁(𝑦,𝑡,𝑠)   𝑌(𝑡,𝑠)   𝑍(𝑦,𝑠)

Proof of Theorem cdleme43fsv1sn
StepHypRef Expression
1 cdlemefs32.b . 2 𝐵 = (Base‘𝐾)
2 cdlemefs32.l . 2 = (le‘𝐾)
3 cdlemefs32.j . 2 = (join‘𝐾)
4 cdlemefs32.m . 2 = (meet‘𝐾)
5 cdlemefs32.a . 2 𝐴 = (Atoms‘𝐾)
6 cdlemefs32.h . 2 𝐻 = (LHyp‘𝐾)
7 cdlemefs32.u . 2 𝑈 = ((𝑃 𝑄) 𝑊)
8 cdlemefs32.d . 2 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
9 cdlemefs32.e . 2 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
10 cdlemefs32.i . 2 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸))
11 cdlemefs32.n . 2 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐶)
12 cdleme43fs.y . 2 𝑌 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
13 cdleme43fs.z . 2 𝑍 = ((𝑃 𝑄) (𝑌 ((𝑅 𝑆) 𝑊)))
14 eqid 2824 . 2 ((𝑃 𝑄) (𝐷 ((𝑅 𝑡) 𝑊))) = ((𝑃 𝑄) (𝐷 ((𝑅 𝑡) 𝑊)))
15 eqid 2824 . 2 (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = ((𝑃 𝑄) (𝐷 ((𝑅 𝑡) 𝑊))))) = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = ((𝑃 𝑄) (𝐷 ((𝑅 𝑡) 𝑊)))))
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15cdleme43fsv1snlem 37661 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑅 / 𝑠𝑁 = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  wne 3014  wral 3133  csb 3866  ifcif 4450   class class class wbr 5052  cfv 6343  crio 7106  (class class class)co 7149  Basecbs 16483  lecple 16572  joincjn 17554  meetcmee 17555  Atomscatm 36504  HLchlt 36591  LHypclh 37225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-riotaBAD 36194
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-iun 4907  df-iin 4908  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-1st 7684  df-2nd 7685  df-undef 7935  df-proset 17538  df-poset 17556  df-plt 17568  df-lub 17584  df-glb 17585  df-join 17586  df-meet 17587  df-p0 17649  df-p1 17650  df-lat 17656  df-clat 17718  df-oposet 36417  df-ol 36419  df-oml 36420  df-covers 36507  df-ats 36508  df-atl 36539  df-cvlat 36563  df-hlat 36592  df-llines 36739  df-lplanes 36740  df-lvols 36741  df-lines 36742  df-psubsp 36744  df-pmap 36745  df-padd 37037  df-lhyp 37229
This theorem is referenced by:  cdlemefs31fv1  37665
  Copyright terms: Public domain W3C validator