Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme48b Structured version   Visualization version   GIF version

Theorem cdleme48b 40004
Description: TODO: fix comment. (Contributed by NM, 8-Apr-2013.)
Hypotheses
Ref Expression
cdlemef46.b 𝐡 = (Baseβ€˜πΎ)
cdlemef46.l ≀ = (leβ€˜πΎ)
cdlemef46.j ∨ = (joinβ€˜πΎ)
cdlemef46.m ∧ = (meetβ€˜πΎ)
cdlemef46.a 𝐴 = (Atomsβ€˜πΎ)
cdlemef46.h 𝐻 = (LHypβ€˜πΎ)
cdlemef46.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
cdlemef46.d 𝐷 = ((𝑑 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑑) ∧ π‘Š)))
cdlemefs46.e 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑑) ∧ π‘Š)))
cdlemef46.f 𝐹 = (π‘₯ ∈ 𝐡 ↦ if((𝑃 β‰  𝑄 ∧ Β¬ π‘₯ ≀ π‘Š), (℩𝑧 ∈ 𝐡 βˆ€π‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑧 = (if(𝑠 ≀ (𝑃 ∨ 𝑄), (℩𝑦 ∈ 𝐡 βˆ€π‘‘ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑦 = 𝐸)), ⦋𝑠 / π‘‘β¦Œπ·) ∨ (π‘₯ ∧ π‘Š)))), π‘₯))
Assertion
Ref Expression
cdleme48b ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑆 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ ((πΉβ€˜π‘‹) ∧ π‘Š) = (𝑋 ∧ π‘Š))
Distinct variable groups:   𝑑,𝑠,π‘₯,𝑦,𝑧,𝐴   𝐡,𝑠,𝑑,π‘₯,𝑦,𝑧   𝐷,𝑠,π‘₯,𝑦,𝑧   π‘₯,𝐸,𝑦,𝑧   𝐻,𝑠,𝑑,π‘₯,𝑦,𝑧   ∨ ,𝑠,𝑑,π‘₯,𝑦,𝑧   𝐾,𝑠,𝑑,π‘₯,𝑦,𝑧   ≀ ,𝑠,𝑑,π‘₯,𝑦,𝑧   ∧ ,𝑠,𝑑,π‘₯,𝑦,𝑧   𝑃,𝑠,𝑑,π‘₯,𝑦,𝑧   𝑄,𝑠,𝑑,π‘₯,𝑦,𝑧   π‘ˆ,𝑠,𝑑,π‘₯,𝑦,𝑧   π‘Š,𝑠,𝑑,π‘₯,𝑦,𝑧   𝑆,𝑠,𝑑,π‘₯,𝑦,𝑧   𝑋,𝑠,𝑑,π‘₯,𝑧
Allowed substitution hints:   𝐷(𝑑)   𝐸(𝑑,𝑠)   𝐹(π‘₯,𝑦,𝑧,𝑑,𝑠)   𝑋(𝑦)

Proof of Theorem cdleme48b
StepHypRef Expression
1 cdlemef46.b . . . 4 𝐡 = (Baseβ€˜πΎ)
2 cdlemef46.l . . . 4 ≀ = (leβ€˜πΎ)
3 cdlemef46.j . . . 4 ∨ = (joinβ€˜πΎ)
4 cdlemef46.m . . . 4 ∧ = (meetβ€˜πΎ)
5 cdlemef46.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
6 cdlemef46.h . . . 4 𝐻 = (LHypβ€˜πΎ)
7 cdlemef46.u . . . 4 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
8 cdlemef46.d . . . 4 𝐷 = ((𝑑 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑑) ∧ π‘Š)))
9 cdlemefs46.e . . . 4 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑑) ∧ π‘Š)))
10 cdlemef46.f . . . 4 𝐹 = (π‘₯ ∈ 𝐡 ↦ if((𝑃 β‰  𝑄 ∧ Β¬ π‘₯ ≀ π‘Š), (℩𝑧 ∈ 𝐡 βˆ€π‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑧 = (if(𝑠 ≀ (𝑃 ∨ 𝑄), (℩𝑦 ∈ 𝐡 βˆ€π‘‘ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑦 = 𝐸)), ⦋𝑠 / π‘‘β¦Œπ·) ∨ (π‘₯ ∧ π‘Š)))), π‘₯))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10cdleme48fv 40000 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑆 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ (πΉβ€˜π‘‹) = ((πΉβ€˜π‘†) ∨ (𝑋 ∧ π‘Š)))
1211oveq1d 7429 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑆 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ ((πΉβ€˜π‘‹) ∧ π‘Š) = (((πΉβ€˜π‘†) ∨ (𝑋 ∧ π‘Š)) ∧ π‘Š))
13 simp11 1200 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑆 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
14 simp1 1133 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑆 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)))
15 simp3l 1198 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑆 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š))
161, 2, 3, 4, 5, 6, 7, 8, 9, 10cdleme46fvaw 40002 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) β†’ ((πΉβ€˜π‘†) ∈ 𝐴 ∧ Β¬ (πΉβ€˜π‘†) ≀ π‘Š))
1714, 15, 16syl2anc 582 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑆 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ ((πΉβ€˜π‘†) ∈ 𝐴 ∧ Β¬ (πΉβ€˜π‘†) ≀ π‘Š))
18 simp2rl 1239 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑆 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ 𝑋 ∈ 𝐡)
191, 2, 3, 4, 5, 6lhpelim 39538 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((πΉβ€˜π‘†) ∈ 𝐴 ∧ Β¬ (πΉβ€˜π‘†) ≀ π‘Š) ∧ 𝑋 ∈ 𝐡) β†’ (((πΉβ€˜π‘†) ∨ (𝑋 ∧ π‘Š)) ∧ π‘Š) = (𝑋 ∧ π‘Š))
2013, 17, 18, 19syl3anc 1368 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑆 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ (((πΉβ€˜π‘†) ∨ (𝑋 ∧ π‘Š)) ∧ π‘Š) = (𝑋 ∧ π‘Š))
2112, 20eqtrd 2765 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑆 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ ((πΉβ€˜π‘‹) ∧ π‘Š) = (𝑋 ∧ π‘Š))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2930  βˆ€wral 3051  β¦‹csb 3884  ifcif 4522   class class class wbr 5141   ↦ cmpt 5224  β€˜cfv 6541  β„©crio 7369  (class class class)co 7414  Basecbs 17177  lecple 17237  joincjn 18300  meetcmee 18301  Atomscatm 38763  HLchlt 38850  LHypclh 39485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5357  ax-pr 5421  ax-un 7736  ax-riotaBAD 38453
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4317  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4991  df-iin 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5568  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7989  df-2nd 7990  df-undef 8275  df-proset 18284  df-poset 18302  df-plt 18319  df-lub 18335  df-glb 18336  df-join 18337  df-meet 18338  df-p0 18414  df-p1 18415  df-lat 18421  df-clat 18488  df-oposet 38676  df-ol 38678  df-oml 38679  df-covers 38766  df-ats 38767  df-atl 38798  df-cvlat 38822  df-hlat 38851  df-llines 38999  df-lplanes 39000  df-lvols 39001  df-lines 39002  df-psubsp 39004  df-pmap 39005  df-padd 39297  df-lhyp 39489
This theorem is referenced by:  cdleme48d  40036
  Copyright terms: Public domain W3C validator