Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpelim | Structured version Visualization version GIF version |
Description: Eliminate an atom not under a lattice hyperplane. TODO: Look at proofs using lhpmat 37606 to see if this can be used to shorten them. (Contributed by NM, 27-Apr-2013.) |
Ref | Expression |
---|---|
lhpelim.b | ⊢ 𝐵 = (Base‘𝐾) |
lhpelim.l | ⊢ ≤ = (le‘𝐾) |
lhpelim.j | ⊢ ∨ = (join‘𝐾) |
lhpelim.m | ⊢ ∧ = (meet‘𝐾) |
lhpelim.a | ⊢ 𝐴 = (Atoms‘𝐾) |
lhpelim.h | ⊢ 𝐻 = (LHyp‘𝐾) |
Ref | Expression |
---|---|
lhpelim | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → ((𝑃 ∨ (𝑋 ∧ 𝑊)) ∧ 𝑊) = (𝑋 ∧ 𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lhpelim.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
2 | lhpelim.m | . . . . 5 ⊢ ∧ = (meet‘𝐾) | |
3 | eqid 2758 | . . . . 5 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
4 | lhpelim.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | lhpelim.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | 1, 2, 3, 4, 5 | lhpmat 37606 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∧ 𝑊) = (0.‘𝐾)) |
7 | 6 | 3adant3 1129 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → (𝑃 ∧ 𝑊) = (0.‘𝐾)) |
8 | 7 | oveq1d 7165 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → ((𝑃 ∧ 𝑊) ∨ (𝑋 ∧ 𝑊)) = ((0.‘𝐾) ∨ (𝑋 ∧ 𝑊))) |
9 | simp1l 1194 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ HL) | |
10 | simp2l 1196 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → 𝑃 ∈ 𝐴) | |
11 | 9 | hllatd 36940 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ Lat) |
12 | simp3 1135 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
13 | simp1r 1195 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → 𝑊 ∈ 𝐻) | |
14 | lhpelim.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
15 | 14, 5 | lhpbase 37574 | . . . . 5 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
16 | 13, 15 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → 𝑊 ∈ 𝐵) |
17 | 14, 2 | latmcl 17728 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
18 | 11, 12, 16, 17 | syl3anc 1368 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
19 | 14, 1, 2 | latmle2 17753 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ≤ 𝑊) |
20 | 11, 12, 16, 19 | syl3anc 1368 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 𝑊) ≤ 𝑊) |
21 | lhpelim.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
22 | 14, 1, 21, 2, 4 | atmod4i2 37443 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ (𝑋 ∧ 𝑊) ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ (𝑋 ∧ 𝑊) ≤ 𝑊) → ((𝑃 ∧ 𝑊) ∨ (𝑋 ∧ 𝑊)) = ((𝑃 ∨ (𝑋 ∧ 𝑊)) ∧ 𝑊)) |
23 | 9, 10, 18, 16, 20, 22 | syl131anc 1380 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → ((𝑃 ∧ 𝑊) ∨ (𝑋 ∧ 𝑊)) = ((𝑃 ∨ (𝑋 ∧ 𝑊)) ∧ 𝑊)) |
24 | hlol 36937 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) | |
25 | 9, 24 | syl 17 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ OL) |
26 | 14, 21, 3 | olj02 36802 | . . 3 ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∧ 𝑊) ∈ 𝐵) → ((0.‘𝐾) ∨ (𝑋 ∧ 𝑊)) = (𝑋 ∧ 𝑊)) |
27 | 25, 18, 26 | syl2anc 587 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → ((0.‘𝐾) ∨ (𝑋 ∧ 𝑊)) = (𝑋 ∧ 𝑊)) |
28 | 8, 23, 27 | 3eqtr3d 2801 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → ((𝑃 ∨ (𝑋 ∧ 𝑊)) ∧ 𝑊) = (𝑋 ∧ 𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 class class class wbr 5032 ‘cfv 6335 (class class class)co 7150 Basecbs 16541 lecple 16630 joincjn 17620 meetcmee 17621 0.cp0 17713 Latclat 17721 OLcol 36750 Atomscatm 36839 HLchlt 36926 LHypclh 37560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-iun 4885 df-iin 4886 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-1st 7693 df-2nd 7694 df-proset 17604 df-poset 17622 df-plt 17634 df-lub 17650 df-glb 17651 df-join 17652 df-meet 17653 df-p0 17715 df-lat 17722 df-clat 17784 df-oposet 36752 df-ol 36754 df-oml 36755 df-covers 36842 df-ats 36843 df-atl 36874 df-cvlat 36898 df-hlat 36927 df-psubsp 37079 df-pmap 37080 df-padd 37372 df-lhyp 37564 |
This theorem is referenced by: cdleme48b 38079 cdlemg7fvN 38200 |
Copyright terms: Public domain | W3C validator |