Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpelim Structured version   Visualization version   GIF version

Theorem lhpelim 35845
Description: Eliminate an atom not under a lattice hyperplane. TODO: Look at proofs using lhpmat 35838 to see if this can be used to shorten them. (Contributed by NM, 27-Apr-2013.)
Hypotheses
Ref Expression
lhpelim.b 𝐵 = (Base‘𝐾)
lhpelim.l = (le‘𝐾)
lhpelim.j = (join‘𝐾)
lhpelim.m = (meet‘𝐾)
lhpelim.a 𝐴 = (Atoms‘𝐾)
lhpelim.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpelim (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) → ((𝑃 (𝑋 𝑊)) 𝑊) = (𝑋 𝑊))

Proof of Theorem lhpelim
StepHypRef Expression
1 lhpelim.l . . . . 5 = (le‘𝐾)
2 lhpelim.m . . . . 5 = (meet‘𝐾)
3 eqid 2771 . . . . 5 (0.‘𝐾) = (0.‘𝐾)
4 lhpelim.a . . . . 5 𝐴 = (Atoms‘𝐾)
5 lhpelim.h . . . . 5 𝐻 = (LHyp‘𝐾)
61, 2, 3, 4, 5lhpmat 35838 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = (0.‘𝐾))
763adant3 1126 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) → (𝑃 𝑊) = (0.‘𝐾))
87oveq1d 6808 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) → ((𝑃 𝑊) (𝑋 𝑊)) = ((0.‘𝐾) (𝑋 𝑊)))
9 simp1l 1239 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) → 𝐾 ∈ HL)
10 simp2l 1241 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) → 𝑃𝐴)
11 hllat 35172 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
129, 11syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) → 𝐾 ∈ Lat)
13 simp3 1132 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) → 𝑋𝐵)
14 simp1r 1240 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) → 𝑊𝐻)
15 lhpelim.b . . . . . 6 𝐵 = (Base‘𝐾)
1615, 5lhpbase 35806 . . . . 5 (𝑊𝐻𝑊𝐵)
1714, 16syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) → 𝑊𝐵)
1815, 2latmcl 17260 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
1912, 13, 17, 18syl3anc 1476 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) → (𝑋 𝑊) ∈ 𝐵)
2015, 1, 2latmle2 17285 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) 𝑊)
2112, 13, 17, 20syl3anc 1476 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) → (𝑋 𝑊) 𝑊)
22 lhpelim.j . . . 4 = (join‘𝐾)
2315, 1, 22, 2, 4atmod4i2 35675 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴 ∧ (𝑋 𝑊) ∈ 𝐵𝑊𝐵) ∧ (𝑋 𝑊) 𝑊) → ((𝑃 𝑊) (𝑋 𝑊)) = ((𝑃 (𝑋 𝑊)) 𝑊))
249, 10, 19, 17, 21, 23syl131anc 1489 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) → ((𝑃 𝑊) (𝑋 𝑊)) = ((𝑃 (𝑋 𝑊)) 𝑊))
25 hlol 35170 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ OL)
269, 25syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) → 𝐾 ∈ OL)
2715, 22, 3olj02 35035 . . 3 ((𝐾 ∈ OL ∧ (𝑋 𝑊) ∈ 𝐵) → ((0.‘𝐾) (𝑋 𝑊)) = (𝑋 𝑊))
2826, 19, 27syl2anc 573 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) → ((0.‘𝐾) (𝑋 𝑊)) = (𝑋 𝑊))
298, 24, 283eqtr3d 2813 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) → ((𝑃 (𝑋 𝑊)) 𝑊) = (𝑋 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145   class class class wbr 4786  cfv 6031  (class class class)co 6793  Basecbs 16064  lecple 16156  joincjn 17152  meetcmee 17153  0.cp0 17245  Latclat 17253  OLcol 34983  Atomscatm 35072  HLchlt 35159  LHypclh 35792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-1st 7315  df-2nd 7316  df-preset 17136  df-poset 17154  df-plt 17166  df-lub 17182  df-glb 17183  df-join 17184  df-meet 17185  df-p0 17247  df-lat 17254  df-clat 17316  df-oposet 34985  df-ol 34987  df-oml 34988  df-covers 35075  df-ats 35076  df-atl 35107  df-cvlat 35131  df-hlat 35160  df-psubsp 35311  df-pmap 35312  df-padd 35604  df-lhyp 35796
This theorem is referenced by:  cdleme48b  36312  cdlemg7fvN  36433
  Copyright terms: Public domain W3C validator