Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpelim Structured version   Visualization version   GIF version

Theorem lhpelim 37613
Description: Eliminate an atom not under a lattice hyperplane. TODO: Look at proofs using lhpmat 37606 to see if this can be used to shorten them. (Contributed by NM, 27-Apr-2013.)
Hypotheses
Ref Expression
lhpelim.b 𝐵 = (Base‘𝐾)
lhpelim.l = (le‘𝐾)
lhpelim.j = (join‘𝐾)
lhpelim.m = (meet‘𝐾)
lhpelim.a 𝐴 = (Atoms‘𝐾)
lhpelim.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpelim (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) → ((𝑃 (𝑋 𝑊)) 𝑊) = (𝑋 𝑊))

Proof of Theorem lhpelim
StepHypRef Expression
1 lhpelim.l . . . . 5 = (le‘𝐾)
2 lhpelim.m . . . . 5 = (meet‘𝐾)
3 eqid 2758 . . . . 5 (0.‘𝐾) = (0.‘𝐾)
4 lhpelim.a . . . . 5 𝐴 = (Atoms‘𝐾)
5 lhpelim.h . . . . 5 𝐻 = (LHyp‘𝐾)
61, 2, 3, 4, 5lhpmat 37606 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = (0.‘𝐾))
763adant3 1129 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) → (𝑃 𝑊) = (0.‘𝐾))
87oveq1d 7165 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) → ((𝑃 𝑊) (𝑋 𝑊)) = ((0.‘𝐾) (𝑋 𝑊)))
9 simp1l 1194 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) → 𝐾 ∈ HL)
10 simp2l 1196 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) → 𝑃𝐴)
119hllatd 36940 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) → 𝐾 ∈ Lat)
12 simp3 1135 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) → 𝑋𝐵)
13 simp1r 1195 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) → 𝑊𝐻)
14 lhpelim.b . . . . . 6 𝐵 = (Base‘𝐾)
1514, 5lhpbase 37574 . . . . 5 (𝑊𝐻𝑊𝐵)
1613, 15syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) → 𝑊𝐵)
1714, 2latmcl 17728 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
1811, 12, 16, 17syl3anc 1368 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) → (𝑋 𝑊) ∈ 𝐵)
1914, 1, 2latmle2 17753 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) 𝑊)
2011, 12, 16, 19syl3anc 1368 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) → (𝑋 𝑊) 𝑊)
21 lhpelim.j . . . 4 = (join‘𝐾)
2214, 1, 21, 2, 4atmod4i2 37443 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴 ∧ (𝑋 𝑊) ∈ 𝐵𝑊𝐵) ∧ (𝑋 𝑊) 𝑊) → ((𝑃 𝑊) (𝑋 𝑊)) = ((𝑃 (𝑋 𝑊)) 𝑊))
239, 10, 18, 16, 20, 22syl131anc 1380 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) → ((𝑃 𝑊) (𝑋 𝑊)) = ((𝑃 (𝑋 𝑊)) 𝑊))
24 hlol 36937 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ OL)
259, 24syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) → 𝐾 ∈ OL)
2614, 21, 3olj02 36802 . . 3 ((𝐾 ∈ OL ∧ (𝑋 𝑊) ∈ 𝐵) → ((0.‘𝐾) (𝑋 𝑊)) = (𝑋 𝑊))
2725, 18, 26syl2anc 587 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) → ((0.‘𝐾) (𝑋 𝑊)) = (𝑋 𝑊))
288, 23, 273eqtr3d 2801 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) → ((𝑃 (𝑋 𝑊)) 𝑊) = (𝑋 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111   class class class wbr 5032  cfv 6335  (class class class)co 7150  Basecbs 16541  lecple 16630  joincjn 17620  meetcmee 17621  0.cp0 17713  Latclat 17721  OLcol 36750  Atomscatm 36839  HLchlt 36926  LHypclh 37560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-iun 4885  df-iin 4886  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7693  df-2nd 7694  df-proset 17604  df-poset 17622  df-plt 17634  df-lub 17650  df-glb 17651  df-join 17652  df-meet 17653  df-p0 17715  df-lat 17722  df-clat 17784  df-oposet 36752  df-ol 36754  df-oml 36755  df-covers 36842  df-ats 36843  df-atl 36874  df-cvlat 36898  df-hlat 36927  df-psubsp 37079  df-pmap 37080  df-padd 37372  df-lhyp 37564
This theorem is referenced by:  cdleme48b  38079  cdlemg7fvN  38200
  Copyright terms: Public domain W3C validator