| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpelim | Structured version Visualization version GIF version | ||
| Description: Eliminate an atom not under a lattice hyperplane. TODO: Look at proofs using lhpmat 40009 to see if this can be used to shorten them. (Contributed by NM, 27-Apr-2013.) |
| Ref | Expression |
|---|---|
| lhpelim.b | ⊢ 𝐵 = (Base‘𝐾) |
| lhpelim.l | ⊢ ≤ = (le‘𝐾) |
| lhpelim.j | ⊢ ∨ = (join‘𝐾) |
| lhpelim.m | ⊢ ∧ = (meet‘𝐾) |
| lhpelim.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| lhpelim.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| Ref | Expression |
|---|---|
| lhpelim | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → ((𝑃 ∨ (𝑋 ∧ 𝑊)) ∧ 𝑊) = (𝑋 ∧ 𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lhpelim.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 2 | lhpelim.m | . . . . 5 ⊢ ∧ = (meet‘𝐾) | |
| 3 | eqid 2729 | . . . . 5 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
| 4 | lhpelim.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | lhpelim.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 6 | 1, 2, 3, 4, 5 | lhpmat 40009 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∧ 𝑊) = (0.‘𝐾)) |
| 7 | 6 | 3adant3 1132 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → (𝑃 ∧ 𝑊) = (0.‘𝐾)) |
| 8 | 7 | oveq1d 7368 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → ((𝑃 ∧ 𝑊) ∨ (𝑋 ∧ 𝑊)) = ((0.‘𝐾) ∨ (𝑋 ∧ 𝑊))) |
| 9 | simp1l 1198 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ HL) | |
| 10 | simp2l 1200 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → 𝑃 ∈ 𝐴) | |
| 11 | 9 | hllatd 39342 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ Lat) |
| 12 | simp3 1138 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 13 | simp1r 1199 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → 𝑊 ∈ 𝐻) | |
| 14 | lhpelim.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 15 | 14, 5 | lhpbase 39977 | . . . . 5 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
| 16 | 13, 15 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → 𝑊 ∈ 𝐵) |
| 17 | 14, 2 | latmcl 18364 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
| 18 | 11, 12, 16, 17 | syl3anc 1373 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
| 19 | 14, 1, 2 | latmle2 18389 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ≤ 𝑊) |
| 20 | 11, 12, 16, 19 | syl3anc 1373 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 𝑊) ≤ 𝑊) |
| 21 | lhpelim.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 22 | 14, 1, 21, 2, 4 | atmod4i2 39846 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ (𝑋 ∧ 𝑊) ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ (𝑋 ∧ 𝑊) ≤ 𝑊) → ((𝑃 ∧ 𝑊) ∨ (𝑋 ∧ 𝑊)) = ((𝑃 ∨ (𝑋 ∧ 𝑊)) ∧ 𝑊)) |
| 23 | 9, 10, 18, 16, 20, 22 | syl131anc 1385 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → ((𝑃 ∧ 𝑊) ∨ (𝑋 ∧ 𝑊)) = ((𝑃 ∨ (𝑋 ∧ 𝑊)) ∧ 𝑊)) |
| 24 | hlol 39339 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) | |
| 25 | 9, 24 | syl 17 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ OL) |
| 26 | 14, 21, 3 | olj02 39204 | . . 3 ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∧ 𝑊) ∈ 𝐵) → ((0.‘𝐾) ∨ (𝑋 ∧ 𝑊)) = (𝑋 ∧ 𝑊)) |
| 27 | 25, 18, 26 | syl2anc 584 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → ((0.‘𝐾) ∨ (𝑋 ∧ 𝑊)) = (𝑋 ∧ 𝑊)) |
| 28 | 8, 23, 27 | 3eqtr3d 2772 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → ((𝑃 ∨ (𝑋 ∧ 𝑊)) ∧ 𝑊) = (𝑋 ∧ 𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 lecple 17186 joincjn 18235 meetcmee 18236 0.cp0 18345 Latclat 18355 OLcol 39152 Atomscatm 39241 HLchlt 39328 LHypclh 39963 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-proset 18218 df-poset 18237 df-plt 18252 df-lub 18268 df-glb 18269 df-join 18270 df-meet 18271 df-p0 18347 df-lat 18356 df-clat 18423 df-oposet 39154 df-ol 39156 df-oml 39157 df-covers 39244 df-ats 39245 df-atl 39276 df-cvlat 39300 df-hlat 39329 df-psubsp 39482 df-pmap 39483 df-padd 39775 df-lhyp 39967 |
| This theorem is referenced by: cdleme48b 40482 cdlemg7fvN 40603 |
| Copyright terms: Public domain | W3C validator |