Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpelim Structured version   Visualization version   GIF version

Theorem lhpelim 40156
Description: Eliminate an atom not under a lattice hyperplane. TODO: Look at proofs using lhpmat 40149 to see if this can be used to shorten them. (Contributed by NM, 27-Apr-2013.)
Hypotheses
Ref Expression
lhpelim.b 𝐵 = (Base‘𝐾)
lhpelim.l = (le‘𝐾)
lhpelim.j = (join‘𝐾)
lhpelim.m = (meet‘𝐾)
lhpelim.a 𝐴 = (Atoms‘𝐾)
lhpelim.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpelim (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) → ((𝑃 (𝑋 𝑊)) 𝑊) = (𝑋 𝑊))

Proof of Theorem lhpelim
StepHypRef Expression
1 lhpelim.l . . . . 5 = (le‘𝐾)
2 lhpelim.m . . . . 5 = (meet‘𝐾)
3 eqid 2733 . . . . 5 (0.‘𝐾) = (0.‘𝐾)
4 lhpelim.a . . . . 5 𝐴 = (Atoms‘𝐾)
5 lhpelim.h . . . . 5 𝐻 = (LHyp‘𝐾)
61, 2, 3, 4, 5lhpmat 40149 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = (0.‘𝐾))
763adant3 1132 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) → (𝑃 𝑊) = (0.‘𝐾))
87oveq1d 7367 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) → ((𝑃 𝑊) (𝑋 𝑊)) = ((0.‘𝐾) (𝑋 𝑊)))
9 simp1l 1198 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) → 𝐾 ∈ HL)
10 simp2l 1200 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) → 𝑃𝐴)
119hllatd 39483 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) → 𝐾 ∈ Lat)
12 simp3 1138 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) → 𝑋𝐵)
13 simp1r 1199 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) → 𝑊𝐻)
14 lhpelim.b . . . . . 6 𝐵 = (Base‘𝐾)
1514, 5lhpbase 40117 . . . . 5 (𝑊𝐻𝑊𝐵)
1613, 15syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) → 𝑊𝐵)
1714, 2latmcl 18348 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
1811, 12, 16, 17syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) → (𝑋 𝑊) ∈ 𝐵)
1914, 1, 2latmle2 18373 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) 𝑊)
2011, 12, 16, 19syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) → (𝑋 𝑊) 𝑊)
21 lhpelim.j . . . 4 = (join‘𝐾)
2214, 1, 21, 2, 4atmod4i2 39986 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴 ∧ (𝑋 𝑊) ∈ 𝐵𝑊𝐵) ∧ (𝑋 𝑊) 𝑊) → ((𝑃 𝑊) (𝑋 𝑊)) = ((𝑃 (𝑋 𝑊)) 𝑊))
239, 10, 18, 16, 20, 22syl131anc 1385 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) → ((𝑃 𝑊) (𝑋 𝑊)) = ((𝑃 (𝑋 𝑊)) 𝑊))
24 hlol 39480 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ OL)
259, 24syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) → 𝐾 ∈ OL)
2614, 21, 3olj02 39345 . . 3 ((𝐾 ∈ OL ∧ (𝑋 𝑊) ∈ 𝐵) → ((0.‘𝐾) (𝑋 𝑊)) = (𝑋 𝑊))
2725, 18, 26syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) → ((0.‘𝐾) (𝑋 𝑊)) = (𝑋 𝑊))
288, 23, 273eqtr3d 2776 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) → ((𝑃 (𝑋 𝑊)) 𝑊) = (𝑋 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113   class class class wbr 5093  cfv 6486  (class class class)co 7352  Basecbs 17122  lecple 17170  joincjn 18219  meetcmee 18220  0.cp0 18329  Latclat 18339  OLcol 39293  Atomscatm 39382  HLchlt 39469  LHypclh 40103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-proset 18202  df-poset 18221  df-plt 18236  df-lub 18252  df-glb 18253  df-join 18254  df-meet 18255  df-p0 18331  df-lat 18340  df-clat 18407  df-oposet 39295  df-ol 39297  df-oml 39298  df-covers 39385  df-ats 39386  df-atl 39417  df-cvlat 39441  df-hlat 39470  df-psubsp 39622  df-pmap 39623  df-padd 39915  df-lhyp 40107
This theorem is referenced by:  cdleme48b  40622  cdlemg7fvN  40743
  Copyright terms: Public domain W3C validator