![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpelim | Structured version Visualization version GIF version |
Description: Eliminate an atom not under a lattice hyperplane. TODO: Look at proofs using lhpmat 39492 to see if this can be used to shorten them. (Contributed by NM, 27-Apr-2013.) |
Ref | Expression |
---|---|
lhpelim.b | ⊢ 𝐵 = (Base‘𝐾) |
lhpelim.l | ⊢ ≤ = (le‘𝐾) |
lhpelim.j | ⊢ ∨ = (join‘𝐾) |
lhpelim.m | ⊢ ∧ = (meet‘𝐾) |
lhpelim.a | ⊢ 𝐴 = (Atoms‘𝐾) |
lhpelim.h | ⊢ 𝐻 = (LHyp‘𝐾) |
Ref | Expression |
---|---|
lhpelim | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → ((𝑃 ∨ (𝑋 ∧ 𝑊)) ∧ 𝑊) = (𝑋 ∧ 𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lhpelim.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
2 | lhpelim.m | . . . . 5 ⊢ ∧ = (meet‘𝐾) | |
3 | eqid 2727 | . . . . 5 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
4 | lhpelim.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | lhpelim.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | 1, 2, 3, 4, 5 | lhpmat 39492 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∧ 𝑊) = (0.‘𝐾)) |
7 | 6 | 3adant3 1130 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → (𝑃 ∧ 𝑊) = (0.‘𝐾)) |
8 | 7 | oveq1d 7429 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → ((𝑃 ∧ 𝑊) ∨ (𝑋 ∧ 𝑊)) = ((0.‘𝐾) ∨ (𝑋 ∧ 𝑊))) |
9 | simp1l 1195 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ HL) | |
10 | simp2l 1197 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → 𝑃 ∈ 𝐴) | |
11 | 9 | hllatd 38825 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ Lat) |
12 | simp3 1136 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
13 | simp1r 1196 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → 𝑊 ∈ 𝐻) | |
14 | lhpelim.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
15 | 14, 5 | lhpbase 39460 | . . . . 5 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
16 | 13, 15 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → 𝑊 ∈ 𝐵) |
17 | 14, 2 | latmcl 18425 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
18 | 11, 12, 16, 17 | syl3anc 1369 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
19 | 14, 1, 2 | latmle2 18450 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ≤ 𝑊) |
20 | 11, 12, 16, 19 | syl3anc 1369 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 𝑊) ≤ 𝑊) |
21 | lhpelim.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
22 | 14, 1, 21, 2, 4 | atmod4i2 39329 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ (𝑋 ∧ 𝑊) ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ (𝑋 ∧ 𝑊) ≤ 𝑊) → ((𝑃 ∧ 𝑊) ∨ (𝑋 ∧ 𝑊)) = ((𝑃 ∨ (𝑋 ∧ 𝑊)) ∧ 𝑊)) |
23 | 9, 10, 18, 16, 20, 22 | syl131anc 1381 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → ((𝑃 ∧ 𝑊) ∨ (𝑋 ∧ 𝑊)) = ((𝑃 ∨ (𝑋 ∧ 𝑊)) ∧ 𝑊)) |
24 | hlol 38822 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) | |
25 | 9, 24 | syl 17 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ OL) |
26 | 14, 21, 3 | olj02 38687 | . . 3 ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∧ 𝑊) ∈ 𝐵) → ((0.‘𝐾) ∨ (𝑋 ∧ 𝑊)) = (𝑋 ∧ 𝑊)) |
27 | 25, 18, 26 | syl2anc 583 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → ((0.‘𝐾) ∨ (𝑋 ∧ 𝑊)) = (𝑋 ∧ 𝑊)) |
28 | 8, 23, 27 | 3eqtr3d 2775 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → ((𝑃 ∨ (𝑋 ∧ 𝑊)) ∧ 𝑊) = (𝑋 ∧ 𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 class class class wbr 5142 ‘cfv 6542 (class class class)co 7414 Basecbs 17173 lecple 17233 joincjn 18296 meetcmee 18297 0.cp0 18408 Latclat 18416 OLcol 38635 Atomscatm 38724 HLchlt 38811 LHypclh 39446 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7987 df-2nd 7988 df-proset 18280 df-poset 18298 df-plt 18315 df-lub 18331 df-glb 18332 df-join 18333 df-meet 18334 df-p0 18410 df-lat 18417 df-clat 18484 df-oposet 38637 df-ol 38639 df-oml 38640 df-covers 38727 df-ats 38728 df-atl 38759 df-cvlat 38783 df-hlat 38812 df-psubsp 38965 df-pmap 38966 df-padd 39258 df-lhyp 39450 |
This theorem is referenced by: cdleme48b 39965 cdlemg7fvN 40086 |
Copyright terms: Public domain | W3C validator |