| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme50rn | Structured version Visualization version GIF version | ||
| Description: Part of proof of Lemma D in [Crawley] p. 113. TODO: fix comment. (Contributed by NM, 9-Apr-2013.) |
| Ref | Expression |
|---|---|
| cdlemef50.b | ⊢ 𝐵 = (Base‘𝐾) |
| cdlemef50.l | ⊢ ≤ = (le‘𝐾) |
| cdlemef50.j | ⊢ ∨ = (join‘𝐾) |
| cdlemef50.m | ⊢ ∧ = (meet‘𝐾) |
| cdlemef50.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdlemef50.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdlemef50.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
| cdlemef50.d | ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) |
| cdlemefs50.e | ⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) |
| cdlemef50.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑃 ∨ 𝑄), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) |
| Ref | Expression |
|---|---|
| cdleme50rn | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ran 𝐹 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdlemef50.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | cdlemef50.l | . 2 ⊢ ≤ = (le‘𝐾) | |
| 3 | cdlemef50.j | . 2 ⊢ ∨ = (join‘𝐾) | |
| 4 | cdlemef50.m | . 2 ⊢ ∧ = (meet‘𝐾) | |
| 5 | cdlemef50.a | . 2 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 6 | cdlemef50.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 7 | cdlemef50.u | . 2 ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
| 8 | cdlemef50.d | . 2 ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) | |
| 9 | cdlemefs50.e | . 2 ⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) | |
| 10 | cdlemef50.f | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑃 ∨ 𝑄), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) | |
| 11 | eqid 2731 | . 2 ⊢ ((𝑄 ∨ 𝑃) ∧ 𝑊) = ((𝑄 ∨ 𝑃) ∧ 𝑊) | |
| 12 | eqid 2731 | . 2 ⊢ ((𝑣 ∨ ((𝑄 ∨ 𝑃) ∧ 𝑊)) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑣) ∧ 𝑊))) = ((𝑣 ∨ ((𝑄 ∨ 𝑃) ∧ 𝑊)) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑣) ∧ 𝑊))) | |
| 13 | eqid 2731 | . 2 ⊢ ((𝑄 ∨ 𝑃) ∧ (((𝑣 ∨ ((𝑄 ∨ 𝑃) ∧ 𝑊)) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑣) ∧ 𝑊))) ∨ ((𝑢 ∨ 𝑣) ∧ 𝑊))) = ((𝑄 ∨ 𝑃) ∧ (((𝑣 ∨ ((𝑄 ∨ 𝑃) ∧ 𝑊)) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑣) ∧ 𝑊))) ∨ ((𝑢 ∨ 𝑣) ∧ 𝑊))) | |
| 14 | eqid 2731 | . 2 ⊢ (𝑎 ∈ 𝐵 ↦ if((𝑄 ≠ 𝑃 ∧ ¬ 𝑎 ≤ 𝑊), (℩𝑐 ∈ 𝐵 ∀𝑢 ∈ 𝐴 ((¬ 𝑢 ≤ 𝑊 ∧ (𝑢 ∨ (𝑎 ∧ 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 ≤ (𝑄 ∨ 𝑃), (℩𝑏 ∈ 𝐵 ∀𝑣 ∈ 𝐴 ((¬ 𝑣 ≤ 𝑊 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑃)) → 𝑏 = ((𝑄 ∨ 𝑃) ∧ (((𝑣 ∨ ((𝑄 ∨ 𝑃) ∧ 𝑊)) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑣) ∧ 𝑊))) ∨ ((𝑢 ∨ 𝑣) ∧ 𝑊))))), ⦋𝑢 / 𝑣⦌((𝑣 ∨ ((𝑄 ∨ 𝑃) ∧ 𝑊)) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑣) ∧ 𝑊)))) ∨ (𝑎 ∧ 𝑊)))), 𝑎)) = (𝑎 ∈ 𝐵 ↦ if((𝑄 ≠ 𝑃 ∧ ¬ 𝑎 ≤ 𝑊), (℩𝑐 ∈ 𝐵 ∀𝑢 ∈ 𝐴 ((¬ 𝑢 ≤ 𝑊 ∧ (𝑢 ∨ (𝑎 ∧ 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 ≤ (𝑄 ∨ 𝑃), (℩𝑏 ∈ 𝐵 ∀𝑣 ∈ 𝐴 ((¬ 𝑣 ≤ 𝑊 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑃)) → 𝑏 = ((𝑄 ∨ 𝑃) ∧ (((𝑣 ∨ ((𝑄 ∨ 𝑃) ∧ 𝑊)) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑣) ∧ 𝑊))) ∨ ((𝑢 ∨ 𝑣) ∧ 𝑊))))), ⦋𝑢 / 𝑣⦌((𝑣 ∨ ((𝑄 ∨ 𝑃) ∧ 𝑊)) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑣) ∧ 𝑊)))) ∨ (𝑎 ∧ 𝑊)))), 𝑎)) | |
| 15 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 | cdleme50rnlem 40649 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ran 𝐹 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ⦋csb 3845 ifcif 4474 class class class wbr 5093 ↦ cmpt 5174 ran crn 5620 ‘cfv 6487 ℩crio 7308 (class class class)co 7352 Basecbs 17126 lecple 17174 joincjn 18223 meetcmee 18224 Atomscatm 39368 HLchlt 39455 LHypclh 40089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-riotaBAD 39058 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-undef 8209 df-proset 18206 df-poset 18225 df-plt 18240 df-lub 18256 df-glb 18257 df-join 18258 df-meet 18259 df-p0 18335 df-p1 18336 df-lat 18344 df-clat 18411 df-oposet 39281 df-ol 39283 df-oml 39284 df-covers 39371 df-ats 39372 df-atl 39403 df-cvlat 39427 df-hlat 39456 df-llines 39603 df-lplanes 39604 df-lvols 39605 df-lines 39606 df-psubsp 39608 df-pmap 39609 df-padd 39901 df-lhyp 40093 |
| This theorem is referenced by: cdleme50f1o 40651 |
| Copyright terms: Public domain | W3C validator |