Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme50rnlem Structured version   Visualization version   GIF version

Theorem cdleme50rnlem 39718
Description: Part of proof of Lemma D in [Crawley] p. 113. TODO: fix comment. TODO: can we get rid of 𝐺 stuff if we show 𝐺 = ◑𝐹 earlier? (Contributed by NM, 9-Apr-2013.)
Hypotheses
Ref Expression
cdlemef50.b 𝐡 = (Baseβ€˜πΎ)
cdlemef50.l ≀ = (leβ€˜πΎ)
cdlemef50.j ∨ = (joinβ€˜πΎ)
cdlemef50.m ∧ = (meetβ€˜πΎ)
cdlemef50.a 𝐴 = (Atomsβ€˜πΎ)
cdlemef50.h 𝐻 = (LHypβ€˜πΎ)
cdlemef50.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
cdlemef50.d 𝐷 = ((𝑑 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑑) ∧ π‘Š)))
cdlemefs50.e 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑑) ∧ π‘Š)))
cdlemef50.f 𝐹 = (π‘₯ ∈ 𝐡 ↦ if((𝑃 β‰  𝑄 ∧ Β¬ π‘₯ ≀ π‘Š), (℩𝑧 ∈ 𝐡 βˆ€π‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑧 = (if(𝑠 ≀ (𝑃 ∨ 𝑄), (℩𝑦 ∈ 𝐡 βˆ€π‘‘ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑦 = 𝐸)), ⦋𝑠 / π‘‘β¦Œπ·) ∨ (π‘₯ ∧ π‘Š)))), π‘₯))
cdlemef50.v 𝑉 = ((𝑄 ∨ 𝑃) ∧ π‘Š)
cdlemef50.n 𝑁 = ((𝑣 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑣) ∧ π‘Š)))
cdlemefs50.o 𝑂 = ((𝑄 ∨ 𝑃) ∧ (𝑁 ∨ ((𝑒 ∨ 𝑣) ∧ π‘Š)))
cdlemef50.g 𝐺 = (π‘Ž ∈ 𝐡 ↦ if((𝑄 β‰  𝑃 ∧ Β¬ π‘Ž ≀ π‘Š), (℩𝑐 ∈ 𝐡 βˆ€π‘’ ∈ 𝐴 ((Β¬ 𝑒 ≀ π‘Š ∧ (𝑒 ∨ (π‘Ž ∧ π‘Š)) = π‘Ž) β†’ 𝑐 = (if(𝑒 ≀ (𝑄 ∨ 𝑃), (℩𝑏 ∈ 𝐡 βˆ€π‘£ ∈ 𝐴 ((Β¬ 𝑣 ≀ π‘Š ∧ Β¬ 𝑣 ≀ (𝑄 ∨ 𝑃)) β†’ 𝑏 = 𝑂)), ⦋𝑒 / π‘£β¦Œπ‘) ∨ (π‘Ž ∧ π‘Š)))), π‘Ž))
Assertion
Ref Expression
cdleme50rnlem (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ ran 𝐹 = 𝐡)
Distinct variable groups:   π‘Ž,𝑏,𝑐,𝑠,𝑑,𝑒,𝑣,π‘₯,𝑦,𝑧, ∧   ∨ ,π‘Ž,𝑏,𝑐,𝑠,𝑑,𝑒,𝑣,π‘₯,𝑦,𝑧   ≀ ,π‘Ž,𝑏,𝑐,𝑠,𝑑,𝑒,𝑣,π‘₯,𝑦,𝑧   𝐴,π‘Ž,𝑏,𝑐,𝑠,𝑑,𝑒,𝑣,π‘₯,𝑦,𝑧   𝐡,π‘Ž,𝑏,𝑐,𝑠,𝑑,𝑒,𝑣,π‘₯,𝑦,𝑧   𝐷,π‘Ž,𝑏,𝑐,𝑠,𝑣,π‘₯,𝑦,𝑧   𝐸,π‘Ž,𝑏,𝑐,π‘₯,𝑦,𝑧   𝐹,π‘Ž,𝑏,𝑐,𝑒,𝑣   𝐻,π‘Ž,𝑏,𝑐,𝑠,𝑑,𝑒,𝑣,π‘₯,𝑦,𝑧   𝐾,π‘Ž,𝑏,𝑐,𝑠,𝑑,𝑒,𝑣,π‘₯,𝑦,𝑧   𝑃,π‘Ž,𝑏,𝑐,𝑠,𝑑,𝑒,𝑣,π‘₯,𝑦,𝑧   𝑄,π‘Ž,𝑏,𝑐,𝑠,𝑑,𝑒,𝑣,π‘₯,𝑦,𝑧   π‘ˆ,π‘Ž,𝑏,𝑐,𝑠,𝑑,𝑣,π‘₯,𝑦,𝑧   π‘Š,π‘Ž,𝑏,𝑐,𝑠,𝑑,𝑒,𝑣,π‘₯,𝑦,𝑧   𝐺,𝑠,𝑑,π‘₯,𝑦,𝑧   𝑁,π‘Ž,𝑏,𝑐,𝑑,𝑒,π‘₯,𝑦,𝑧   𝑂,π‘Ž,𝑏,𝑐,π‘₯,𝑦,𝑧   𝑉,π‘Ž,𝑏,𝑐,𝑑,𝑒,𝑣,π‘₯,𝑦,𝑧
Allowed substitution hints:   𝐷(𝑒,𝑑)   π‘ˆ(𝑒)   𝐸(𝑣,𝑒,𝑑,𝑠)   𝐹(π‘₯,𝑦,𝑧,𝑑,𝑠)   𝐺(𝑣,𝑒,π‘Ž,𝑏,𝑐)   𝑁(𝑣,𝑠)   𝑂(𝑣,𝑒,𝑑,𝑠)   𝑉(𝑠)

Proof of Theorem cdleme50rnlem
Dummy variables 𝑒 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdlemef50.b . . . 4 𝐡 = (Baseβ€˜πΎ)
2 cdlemef50.l . . . 4 ≀ = (leβ€˜πΎ)
3 cdlemef50.j . . . 4 ∨ = (joinβ€˜πΎ)
4 cdlemef50.m . . . 4 ∧ = (meetβ€˜πΎ)
5 cdlemef50.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
6 cdlemef50.h . . . 4 𝐻 = (LHypβ€˜πΎ)
7 cdlemef50.u . . . 4 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
8 cdlemef50.d . . . 4 𝐷 = ((𝑑 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑑) ∧ π‘Š)))
9 cdlemefs50.e . . . 4 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑑) ∧ π‘Š)))
10 cdlemef50.f . . . 4 𝐹 = (π‘₯ ∈ 𝐡 ↦ if((𝑃 β‰  𝑄 ∧ Β¬ π‘₯ ≀ π‘Š), (℩𝑧 ∈ 𝐡 βˆ€π‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑧 = (if(𝑠 ≀ (𝑃 ∨ 𝑄), (℩𝑦 ∈ 𝐡 βˆ€π‘‘ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑦 = 𝐸)), ⦋𝑠 / π‘‘β¦Œπ·) ∨ (π‘₯ ∧ π‘Š)))), π‘₯))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10cdleme50f 39716 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ 𝐹:𝐡⟢𝐡)
1211frnd 6724 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ ran 𝐹 βŠ† 𝐡)
13 cdlemef50.v . . . . 5 𝑉 = ((𝑄 ∨ 𝑃) ∧ π‘Š)
14 cdlemef50.n . . . . 5 𝑁 = ((𝑣 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑣) ∧ π‘Š)))
15 cdlemefs50.o . . . . 5 𝑂 = ((𝑄 ∨ 𝑃) ∧ (𝑁 ∨ ((𝑒 ∨ 𝑣) ∧ π‘Š)))
16 cdlemef50.g . . . . 5 𝐺 = (π‘Ž ∈ 𝐡 ↦ if((𝑄 β‰  𝑃 ∧ Β¬ π‘Ž ≀ π‘Š), (℩𝑐 ∈ 𝐡 βˆ€π‘’ ∈ 𝐴 ((Β¬ 𝑒 ≀ π‘Š ∧ (𝑒 ∨ (π‘Ž ∧ π‘Š)) = π‘Ž) β†’ 𝑐 = (if(𝑒 ≀ (𝑄 ∨ 𝑃), (℩𝑏 ∈ 𝐡 βˆ€π‘£ ∈ 𝐴 ((Β¬ 𝑣 ≀ π‘Š ∧ Β¬ 𝑣 ≀ (𝑄 ∨ 𝑃)) β†’ 𝑏 = 𝑂)), ⦋𝑒 / π‘£β¦Œπ‘) ∨ (π‘Ž ∧ π‘Š)))), π‘Ž))
171, 2, 3, 4, 5, 6, 13, 14, 15, 16cdlemeg46fvcl 39680 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑒 ∈ 𝐡) β†’ (πΊβ€˜π‘’) ∈ 𝐡)
181, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16cdleme48fgv 39712 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑒 ∈ 𝐡) β†’ (πΉβ€˜(πΊβ€˜π‘’)) = 𝑒)
19 fveqeq2 6899 . . . . 5 (𝑑 = (πΊβ€˜π‘’) β†’ ((πΉβ€˜π‘‘) = 𝑒 ↔ (πΉβ€˜(πΊβ€˜π‘’)) = 𝑒))
2019rspcev 3611 . . . 4 (((πΊβ€˜π‘’) ∈ 𝐡 ∧ (πΉβ€˜(πΊβ€˜π‘’)) = 𝑒) β†’ βˆƒπ‘‘ ∈ 𝐡 (πΉβ€˜π‘‘) = 𝑒)
2117, 18, 20syl2anc 582 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑒 ∈ 𝐡) β†’ βˆƒπ‘‘ ∈ 𝐡 (πΉβ€˜π‘‘) = 𝑒)
2211adantr 479 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑒 ∈ 𝐡) β†’ 𝐹:𝐡⟢𝐡)
23 ffn 6716 . . . 4 (𝐹:𝐡⟢𝐡 β†’ 𝐹 Fn 𝐡)
24 fvelrnb 6951 . . . 4 (𝐹 Fn 𝐡 β†’ (𝑒 ∈ ran 𝐹 ↔ βˆƒπ‘‘ ∈ 𝐡 (πΉβ€˜π‘‘) = 𝑒))
2522, 23, 243syl 18 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑒 ∈ 𝐡) β†’ (𝑒 ∈ ran 𝐹 ↔ βˆƒπ‘‘ ∈ 𝐡 (πΉβ€˜π‘‘) = 𝑒))
2621, 25mpbird 256 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑒 ∈ 𝐡) β†’ 𝑒 ∈ ran 𝐹)
2712, 26eqelssd 4002 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ ran 𝐹 = 𝐡)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104   β‰  wne 2938  βˆ€wral 3059  βˆƒwrex 3068  β¦‹csb 3892  ifcif 4527   class class class wbr 5147   ↦ cmpt 5230  ran crn 5676   Fn wfn 6537  βŸΆwf 6538  β€˜cfv 6542  β„©crio 7366  (class class class)co 7411  Basecbs 17148  lecple 17208  joincjn 18268  meetcmee 18269  Atomscatm 38436  HLchlt 38523  LHypclh 39158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-riotaBAD 38126
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-undef 8260  df-proset 18252  df-poset 18270  df-plt 18287  df-lub 18303  df-glb 18304  df-join 18305  df-meet 18306  df-p0 18382  df-p1 18383  df-lat 18389  df-clat 18456  df-oposet 38349  df-ol 38351  df-oml 38352  df-covers 38439  df-ats 38440  df-atl 38471  df-cvlat 38495  df-hlat 38524  df-llines 38672  df-lplanes 38673  df-lvols 38674  df-lines 38675  df-psubsp 38677  df-pmap 38678  df-padd 38970  df-lhyp 39162
This theorem is referenced by:  cdleme50rn  39719
  Copyright terms: Public domain W3C validator