![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme50rnlem | Structured version Visualization version GIF version |
Description: Part of proof of Lemma D in [Crawley] p. 113. TODO: fix comment. TODO: can we get rid of πΊ stuff if we show πΊ = β‘πΉ earlier? (Contributed by NM, 9-Apr-2013.) |
Ref | Expression |
---|---|
cdlemef50.b | β’ π΅ = (BaseβπΎ) |
cdlemef50.l | β’ β€ = (leβπΎ) |
cdlemef50.j | β’ β¨ = (joinβπΎ) |
cdlemef50.m | β’ β§ = (meetβπΎ) |
cdlemef50.a | β’ π΄ = (AtomsβπΎ) |
cdlemef50.h | β’ π» = (LHypβπΎ) |
cdlemef50.u | β’ π = ((π β¨ π) β§ π) |
cdlemef50.d | β’ π· = ((π‘ β¨ π) β§ (π β¨ ((π β¨ π‘) β§ π))) |
cdlemefs50.e | β’ πΈ = ((π β¨ π) β§ (π· β¨ ((π β¨ π‘) β§ π))) |
cdlemef50.f | β’ πΉ = (π₯ β π΅ β¦ if((π β π β§ Β¬ π₯ β€ π), (β©π§ β π΅ βπ β π΄ ((Β¬ π β€ π β§ (π β¨ (π₯ β§ π)) = π₯) β π§ = (if(π β€ (π β¨ π), (β©π¦ β π΅ βπ‘ β π΄ ((Β¬ π‘ β€ π β§ Β¬ π‘ β€ (π β¨ π)) β π¦ = πΈ)), β¦π / π‘β¦π·) β¨ (π₯ β§ π)))), π₯)) |
cdlemef50.v | β’ π = ((π β¨ π) β§ π) |
cdlemef50.n | β’ π = ((π£ β¨ π) β§ (π β¨ ((π β¨ π£) β§ π))) |
cdlemefs50.o | β’ π = ((π β¨ π) β§ (π β¨ ((π’ β¨ π£) β§ π))) |
cdlemef50.g | β’ πΊ = (π β π΅ β¦ if((π β π β§ Β¬ π β€ π), (β©π β π΅ βπ’ β π΄ ((Β¬ π’ β€ π β§ (π’ β¨ (π β§ π)) = π) β π = (if(π’ β€ (π β¨ π), (β©π β π΅ βπ£ β π΄ ((Β¬ π£ β€ π β§ Β¬ π£ β€ (π β¨ π)) β π = π)), β¦π’ / π£β¦π) β¨ (π β§ π)))), π)) |
Ref | Expression |
---|---|
cdleme50rnlem | β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β ran πΉ = π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemef50.b | . . . 4 β’ π΅ = (BaseβπΎ) | |
2 | cdlemef50.l | . . . 4 β’ β€ = (leβπΎ) | |
3 | cdlemef50.j | . . . 4 β’ β¨ = (joinβπΎ) | |
4 | cdlemef50.m | . . . 4 β’ β§ = (meetβπΎ) | |
5 | cdlemef50.a | . . . 4 β’ π΄ = (AtomsβπΎ) | |
6 | cdlemef50.h | . . . 4 β’ π» = (LHypβπΎ) | |
7 | cdlemef50.u | . . . 4 β’ π = ((π β¨ π) β§ π) | |
8 | cdlemef50.d | . . . 4 β’ π· = ((π‘ β¨ π) β§ (π β¨ ((π β¨ π‘) β§ π))) | |
9 | cdlemefs50.e | . . . 4 β’ πΈ = ((π β¨ π) β§ (π· β¨ ((π β¨ π‘) β§ π))) | |
10 | cdlemef50.f | . . . 4 β’ πΉ = (π₯ β π΅ β¦ if((π β π β§ Β¬ π₯ β€ π), (β©π§ β π΅ βπ β π΄ ((Β¬ π β€ π β§ (π β¨ (π₯ β§ π)) = π₯) β π§ = (if(π β€ (π β¨ π), (β©π¦ β π΅ βπ‘ β π΄ ((Β¬ π‘ β€ π β§ Β¬ π‘ β€ (π β¨ π)) β π¦ = πΈ)), β¦π / π‘β¦π·) β¨ (π₯ β§ π)))), π₯)) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | cdleme50f 39716 | . . 3 β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β πΉ:π΅βΆπ΅) |
12 | 11 | frnd 6724 | . 2 β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β ran πΉ β π΅) |
13 | cdlemef50.v | . . . . 5 β’ π = ((π β¨ π) β§ π) | |
14 | cdlemef50.n | . . . . 5 β’ π = ((π£ β¨ π) β§ (π β¨ ((π β¨ π£) β§ π))) | |
15 | cdlemefs50.o | . . . . 5 β’ π = ((π β¨ π) β§ (π β¨ ((π’ β¨ π£) β§ π))) | |
16 | cdlemef50.g | . . . . 5 β’ πΊ = (π β π΅ β¦ if((π β π β§ Β¬ π β€ π), (β©π β π΅ βπ’ β π΄ ((Β¬ π’ β€ π β§ (π’ β¨ (π β§ π)) = π) β π = (if(π’ β€ (π β¨ π), (β©π β π΅ βπ£ β π΄ ((Β¬ π£ β€ π β§ Β¬ π£ β€ (π β¨ π)) β π = π)), β¦π’ / π£β¦π) β¨ (π β§ π)))), π)) | |
17 | 1, 2, 3, 4, 5, 6, 13, 14, 15, 16 | cdlemeg46fvcl 39680 | . . . 4 β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ π β π΅) β (πΊβπ) β π΅) |
18 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16 | cdleme48fgv 39712 | . . . 4 β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ π β π΅) β (πΉβ(πΊβπ)) = π) |
19 | fveqeq2 6899 | . . . . 5 β’ (π = (πΊβπ) β ((πΉβπ) = π β (πΉβ(πΊβπ)) = π)) | |
20 | 19 | rspcev 3611 | . . . 4 β’ (((πΊβπ) β π΅ β§ (πΉβ(πΊβπ)) = π) β βπ β π΅ (πΉβπ) = π) |
21 | 17, 18, 20 | syl2anc 582 | . . 3 β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ π β π΅) β βπ β π΅ (πΉβπ) = π) |
22 | 11 | adantr 479 | . . . 4 β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ π β π΅) β πΉ:π΅βΆπ΅) |
23 | ffn 6716 | . . . 4 β’ (πΉ:π΅βΆπ΅ β πΉ Fn π΅) | |
24 | fvelrnb 6951 | . . . 4 β’ (πΉ Fn π΅ β (π β ran πΉ β βπ β π΅ (πΉβπ) = π)) | |
25 | 22, 23, 24 | 3syl 18 | . . 3 β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ π β π΅) β (π β ran πΉ β βπ β π΅ (πΉβπ) = π)) |
26 | 21, 25 | mpbird 256 | . 2 β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ π β π΅) β π β ran πΉ) |
27 | 12, 26 | eqelssd 4002 | 1 β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β ran πΉ = π΅) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 394 β§ w3a 1085 = wceq 1539 β wcel 2104 β wne 2938 βwral 3059 βwrex 3068 β¦csb 3892 ifcif 4527 class class class wbr 5147 β¦ cmpt 5230 ran crn 5676 Fn wfn 6537 βΆwf 6538 βcfv 6542 β©crio 7366 (class class class)co 7411 Basecbs 17148 lecple 17208 joincjn 18268 meetcmee 18269 Atomscatm 38436 HLchlt 38523 LHypclh 39158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-riotaBAD 38126 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-undef 8260 df-proset 18252 df-poset 18270 df-plt 18287 df-lub 18303 df-glb 18304 df-join 18305 df-meet 18306 df-p0 18382 df-p1 18383 df-lat 18389 df-clat 18456 df-oposet 38349 df-ol 38351 df-oml 38352 df-covers 38439 df-ats 38440 df-atl 38471 df-cvlat 38495 df-hlat 38524 df-llines 38672 df-lplanes 38673 df-lvols 38674 df-lines 38675 df-psubsp 38677 df-pmap 38678 df-padd 38970 df-lhyp 39162 |
This theorem is referenced by: cdleme50rn 39719 |
Copyright terms: Public domain | W3C validator |