| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme50rnlem | Structured version Visualization version GIF version | ||
| Description: Part of proof of Lemma D in [Crawley] p. 113. TODO: fix comment. TODO: can we get rid of 𝐺 stuff if we show 𝐺 = ◡𝐹 earlier? (Contributed by NM, 9-Apr-2013.) |
| Ref | Expression |
|---|---|
| cdlemef50.b | ⊢ 𝐵 = (Base‘𝐾) |
| cdlemef50.l | ⊢ ≤ = (le‘𝐾) |
| cdlemef50.j | ⊢ ∨ = (join‘𝐾) |
| cdlemef50.m | ⊢ ∧ = (meet‘𝐾) |
| cdlemef50.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdlemef50.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdlemef50.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
| cdlemef50.d | ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) |
| cdlemefs50.e | ⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) |
| cdlemef50.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑃 ∨ 𝑄), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) |
| cdlemef50.v | ⊢ 𝑉 = ((𝑄 ∨ 𝑃) ∧ 𝑊) |
| cdlemef50.n | ⊢ 𝑁 = ((𝑣 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑣) ∧ 𝑊))) |
| cdlemefs50.o | ⊢ 𝑂 = ((𝑄 ∨ 𝑃) ∧ (𝑁 ∨ ((𝑢 ∨ 𝑣) ∧ 𝑊))) |
| cdlemef50.g | ⊢ 𝐺 = (𝑎 ∈ 𝐵 ↦ if((𝑄 ≠ 𝑃 ∧ ¬ 𝑎 ≤ 𝑊), (℩𝑐 ∈ 𝐵 ∀𝑢 ∈ 𝐴 ((¬ 𝑢 ≤ 𝑊 ∧ (𝑢 ∨ (𝑎 ∧ 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 ≤ (𝑄 ∨ 𝑃), (℩𝑏 ∈ 𝐵 ∀𝑣 ∈ 𝐴 ((¬ 𝑣 ≤ 𝑊 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑃)) → 𝑏 = 𝑂)), ⦋𝑢 / 𝑣⦌𝑁) ∨ (𝑎 ∧ 𝑊)))), 𝑎)) |
| Ref | Expression |
|---|---|
| cdleme50rnlem | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ran 𝐹 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdlemef50.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | cdlemef50.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 3 | cdlemef50.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 4 | cdlemef50.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 5 | cdlemef50.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 6 | cdlemef50.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 7 | cdlemef50.u | . . . 4 ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
| 8 | cdlemef50.d | . . . 4 ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) | |
| 9 | cdlemefs50.e | . . . 4 ⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) | |
| 10 | cdlemef50.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑃 ∨ 𝑄), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) | |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | cdleme50f 40651 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐹:𝐵⟶𝐵) |
| 12 | 11 | frnd 6659 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ran 𝐹 ⊆ 𝐵) |
| 13 | cdlemef50.v | . . . . 5 ⊢ 𝑉 = ((𝑄 ∨ 𝑃) ∧ 𝑊) | |
| 14 | cdlemef50.n | . . . . 5 ⊢ 𝑁 = ((𝑣 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑣) ∧ 𝑊))) | |
| 15 | cdlemefs50.o | . . . . 5 ⊢ 𝑂 = ((𝑄 ∨ 𝑃) ∧ (𝑁 ∨ ((𝑢 ∨ 𝑣) ∧ 𝑊))) | |
| 16 | cdlemef50.g | . . . . 5 ⊢ 𝐺 = (𝑎 ∈ 𝐵 ↦ if((𝑄 ≠ 𝑃 ∧ ¬ 𝑎 ≤ 𝑊), (℩𝑐 ∈ 𝐵 ∀𝑢 ∈ 𝐴 ((¬ 𝑢 ≤ 𝑊 ∧ (𝑢 ∨ (𝑎 ∧ 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 ≤ (𝑄 ∨ 𝑃), (℩𝑏 ∈ 𝐵 ∀𝑣 ∈ 𝐴 ((¬ 𝑣 ≤ 𝑊 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑃)) → 𝑏 = 𝑂)), ⦋𝑢 / 𝑣⦌𝑁) ∨ (𝑎 ∧ 𝑊)))), 𝑎)) | |
| 17 | 1, 2, 3, 4, 5, 6, 13, 14, 15, 16 | cdlemeg46fvcl 40615 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑒 ∈ 𝐵) → (𝐺‘𝑒) ∈ 𝐵) |
| 18 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16 | cdleme48fgv 40647 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑒 ∈ 𝐵) → (𝐹‘(𝐺‘𝑒)) = 𝑒) |
| 19 | fveqeq2 6831 | . . . . 5 ⊢ (𝑑 = (𝐺‘𝑒) → ((𝐹‘𝑑) = 𝑒 ↔ (𝐹‘(𝐺‘𝑒)) = 𝑒)) | |
| 20 | 19 | rspcev 3572 | . . . 4 ⊢ (((𝐺‘𝑒) ∈ 𝐵 ∧ (𝐹‘(𝐺‘𝑒)) = 𝑒) → ∃𝑑 ∈ 𝐵 (𝐹‘𝑑) = 𝑒) |
| 21 | 17, 18, 20 | syl2anc 584 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑒 ∈ 𝐵) → ∃𝑑 ∈ 𝐵 (𝐹‘𝑑) = 𝑒) |
| 22 | 11 | adantr 480 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑒 ∈ 𝐵) → 𝐹:𝐵⟶𝐵) |
| 23 | ffn 6651 | . . . 4 ⊢ (𝐹:𝐵⟶𝐵 → 𝐹 Fn 𝐵) | |
| 24 | fvelrnb 6882 | . . . 4 ⊢ (𝐹 Fn 𝐵 → (𝑒 ∈ ran 𝐹 ↔ ∃𝑑 ∈ 𝐵 (𝐹‘𝑑) = 𝑒)) | |
| 25 | 22, 23, 24 | 3syl 18 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑒 ∈ 𝐵) → (𝑒 ∈ ran 𝐹 ↔ ∃𝑑 ∈ 𝐵 (𝐹‘𝑑) = 𝑒)) |
| 26 | 21, 25 | mpbird 257 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑒 ∈ 𝐵) → 𝑒 ∈ ran 𝐹) |
| 27 | 12, 26 | eqelssd 3951 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ran 𝐹 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 ⦋csb 3845 ifcif 4472 class class class wbr 5089 ↦ cmpt 5170 ran crn 5615 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 ℩crio 7302 (class class class)co 7346 Basecbs 17120 lecple 17168 joincjn 18217 meetcmee 18218 Atomscatm 39372 HLchlt 39459 LHypclh 40093 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-riotaBAD 39062 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-undef 8203 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-p1 18330 df-lat 18338 df-clat 18405 df-oposet 39285 df-ol 39287 df-oml 39288 df-covers 39375 df-ats 39376 df-atl 39407 df-cvlat 39431 df-hlat 39460 df-llines 39607 df-lplanes 39608 df-lvols 39609 df-lines 39610 df-psubsp 39612 df-pmap 39613 df-padd 39905 df-lhyp 40097 |
| This theorem is referenced by: cdleme50rn 40654 |
| Copyright terms: Public domain | W3C validator |