Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme50rnlem | Structured version Visualization version GIF version |
Description: Part of proof of Lemma D in [Crawley] p. 113. TODO: fix comment. TODO: can we get rid of 𝐺 stuff if we show 𝐺 = ◡𝐹 earlier? (Contributed by NM, 9-Apr-2013.) |
Ref | Expression |
---|---|
cdlemef50.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemef50.l | ⊢ ≤ = (le‘𝐾) |
cdlemef50.j | ⊢ ∨ = (join‘𝐾) |
cdlemef50.m | ⊢ ∧ = (meet‘𝐾) |
cdlemef50.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemef50.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemef50.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
cdlemef50.d | ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) |
cdlemefs50.e | ⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) |
cdlemef50.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑃 ∨ 𝑄), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) |
cdlemef50.v | ⊢ 𝑉 = ((𝑄 ∨ 𝑃) ∧ 𝑊) |
cdlemef50.n | ⊢ 𝑁 = ((𝑣 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑣) ∧ 𝑊))) |
cdlemefs50.o | ⊢ 𝑂 = ((𝑄 ∨ 𝑃) ∧ (𝑁 ∨ ((𝑢 ∨ 𝑣) ∧ 𝑊))) |
cdlemef50.g | ⊢ 𝐺 = (𝑎 ∈ 𝐵 ↦ if((𝑄 ≠ 𝑃 ∧ ¬ 𝑎 ≤ 𝑊), (℩𝑐 ∈ 𝐵 ∀𝑢 ∈ 𝐴 ((¬ 𝑢 ≤ 𝑊 ∧ (𝑢 ∨ (𝑎 ∧ 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 ≤ (𝑄 ∨ 𝑃), (℩𝑏 ∈ 𝐵 ∀𝑣 ∈ 𝐴 ((¬ 𝑣 ≤ 𝑊 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑃)) → 𝑏 = 𝑂)), ⦋𝑢 / 𝑣⦌𝑁) ∨ (𝑎 ∧ 𝑊)))), 𝑎)) |
Ref | Expression |
---|---|
cdleme50rnlem | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ran 𝐹 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemef50.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | cdlemef50.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | cdlemef50.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
4 | cdlemef50.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
5 | cdlemef50.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | cdlemef50.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | cdlemef50.u | . . . 4 ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
8 | cdlemef50.d | . . . 4 ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) | |
9 | cdlemefs50.e | . . . 4 ⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) | |
10 | cdlemef50.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑃 ∨ 𝑄), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | cdleme50f 38552 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐹:𝐵⟶𝐵) |
12 | 11 | frnd 6606 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ran 𝐹 ⊆ 𝐵) |
13 | cdlemef50.v | . . . . 5 ⊢ 𝑉 = ((𝑄 ∨ 𝑃) ∧ 𝑊) | |
14 | cdlemef50.n | . . . . 5 ⊢ 𝑁 = ((𝑣 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑣) ∧ 𝑊))) | |
15 | cdlemefs50.o | . . . . 5 ⊢ 𝑂 = ((𝑄 ∨ 𝑃) ∧ (𝑁 ∨ ((𝑢 ∨ 𝑣) ∧ 𝑊))) | |
16 | cdlemef50.g | . . . . 5 ⊢ 𝐺 = (𝑎 ∈ 𝐵 ↦ if((𝑄 ≠ 𝑃 ∧ ¬ 𝑎 ≤ 𝑊), (℩𝑐 ∈ 𝐵 ∀𝑢 ∈ 𝐴 ((¬ 𝑢 ≤ 𝑊 ∧ (𝑢 ∨ (𝑎 ∧ 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 ≤ (𝑄 ∨ 𝑃), (℩𝑏 ∈ 𝐵 ∀𝑣 ∈ 𝐴 ((¬ 𝑣 ≤ 𝑊 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑃)) → 𝑏 = 𝑂)), ⦋𝑢 / 𝑣⦌𝑁) ∨ (𝑎 ∧ 𝑊)))), 𝑎)) | |
17 | 1, 2, 3, 4, 5, 6, 13, 14, 15, 16 | cdlemeg46fvcl 38516 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑒 ∈ 𝐵) → (𝐺‘𝑒) ∈ 𝐵) |
18 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16 | cdleme48fgv 38548 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑒 ∈ 𝐵) → (𝐹‘(𝐺‘𝑒)) = 𝑒) |
19 | fveqeq2 6780 | . . . . 5 ⊢ (𝑑 = (𝐺‘𝑒) → ((𝐹‘𝑑) = 𝑒 ↔ (𝐹‘(𝐺‘𝑒)) = 𝑒)) | |
20 | 19 | rspcev 3561 | . . . 4 ⊢ (((𝐺‘𝑒) ∈ 𝐵 ∧ (𝐹‘(𝐺‘𝑒)) = 𝑒) → ∃𝑑 ∈ 𝐵 (𝐹‘𝑑) = 𝑒) |
21 | 17, 18, 20 | syl2anc 584 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑒 ∈ 𝐵) → ∃𝑑 ∈ 𝐵 (𝐹‘𝑑) = 𝑒) |
22 | 11 | adantr 481 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑒 ∈ 𝐵) → 𝐹:𝐵⟶𝐵) |
23 | ffn 6598 | . . . 4 ⊢ (𝐹:𝐵⟶𝐵 → 𝐹 Fn 𝐵) | |
24 | fvelrnb 6827 | . . . 4 ⊢ (𝐹 Fn 𝐵 → (𝑒 ∈ ran 𝐹 ↔ ∃𝑑 ∈ 𝐵 (𝐹‘𝑑) = 𝑒)) | |
25 | 22, 23, 24 | 3syl 18 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑒 ∈ 𝐵) → (𝑒 ∈ ran 𝐹 ↔ ∃𝑑 ∈ 𝐵 (𝐹‘𝑑) = 𝑒)) |
26 | 21, 25 | mpbird 256 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑒 ∈ 𝐵) → 𝑒 ∈ ran 𝐹) |
27 | 12, 26 | eqelssd 3947 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ran 𝐹 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 ∀wral 3066 ∃wrex 3067 ⦋csb 3837 ifcif 4465 class class class wbr 5079 ↦ cmpt 5162 ran crn 5591 Fn wfn 6427 ⟶wf 6428 ‘cfv 6432 ℩crio 7227 (class class class)co 7271 Basecbs 16910 lecple 16967 joincjn 18027 meetcmee 18028 Atomscatm 37273 HLchlt 37360 LHypclh 37994 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-riotaBAD 36963 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-1st 7824 df-2nd 7825 df-undef 8080 df-proset 18011 df-poset 18029 df-plt 18046 df-lub 18062 df-glb 18063 df-join 18064 df-meet 18065 df-p0 18141 df-p1 18142 df-lat 18148 df-clat 18215 df-oposet 37186 df-ol 37188 df-oml 37189 df-covers 37276 df-ats 37277 df-atl 37308 df-cvlat 37332 df-hlat 37361 df-llines 37508 df-lplanes 37509 df-lvols 37510 df-lines 37511 df-psubsp 37513 df-pmap 37514 df-padd 37806 df-lhyp 37998 |
This theorem is referenced by: cdleme50rn 38555 |
Copyright terms: Public domain | W3C validator |