Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemeg46fgN Structured version   Visualization version   GIF version

Theorem cdlemeg46fgN 39861
Description: TODO FIX COMMENT p. 116 penultimate line: f(g(r)) = r. (Contributed by NM, 4-Apr-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemef46g.b 𝐵 = (Base‘𝐾)
cdlemef46g.l = (le‘𝐾)
cdlemef46g.j = (join‘𝐾)
cdlemef46g.m = (meet‘𝐾)
cdlemef46g.a 𝐴 = (Atoms‘𝐾)
cdlemef46g.h 𝐻 = (LHyp‘𝐾)
cdlemef46g.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdlemef46g.d 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdlemefs46g.e 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
cdlemef46g.f 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))
cdlemef46.v 𝑉 = ((𝑄 𝑃) 𝑊)
cdlemef46.n 𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))
cdlemefs46.o 𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))
cdlemef46.g 𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))
Assertion
Ref Expression
cdlemeg46fgN ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝐹‘(𝐺𝑅)) = 𝑅)
Distinct variable groups:   𝑡,𝑠,𝑥,𝑦,𝑧,𝐴   𝐵,𝑠,𝑡,𝑥,𝑦,𝑧   𝐷,𝑠,𝑥,𝑦,𝑧   𝑥,𝐸,𝑦,𝑧   𝐻,𝑠,𝑡,𝑥,𝑦,𝑧   ,𝑠,𝑡,𝑥,𝑦,𝑧   𝐾,𝑠,𝑡,𝑥,𝑦,𝑧   ,𝑠,𝑡,𝑥,𝑦,𝑧   ,𝑠,𝑡,𝑥,𝑦,𝑧   𝑃,𝑠,𝑡,𝑥,𝑦,𝑧   𝑄,𝑠,𝑡,𝑥,𝑦,𝑧   𝑅,𝑠,𝑡,𝑥,𝑦,𝑧   𝑈,𝑠,𝑡,𝑥,𝑦,𝑧   𝑊,𝑠,𝑡,𝑥,𝑦,𝑧   𝑎,𝑏,𝑐,𝑢,𝑣,𝐴   𝐵,𝑎,𝑏,𝑐,𝑢,𝑣   𝑣,𝐷   𝐺,𝑠,𝑡,𝑥,𝑦,𝑧   𝐻,𝑎,𝑏,𝑐,𝑢,𝑣   ,𝑎,𝑏,𝑐,𝑢,𝑣   𝐾,𝑎,𝑏,𝑐,𝑢,𝑣   ,𝑎,𝑏,𝑐,𝑢,𝑣   ,𝑎,𝑏,𝑐,𝑢,𝑣   𝑁,𝑎,𝑏,𝑐   𝑂,𝑎,𝑏,𝑐   𝑃,𝑎,𝑏,𝑐,𝑢,𝑣   𝑄,𝑎,𝑏,𝑐,𝑢,𝑣   𝑅,𝑎,𝑏,𝑐,𝑢,𝑣   𝑉,𝑎,𝑏,𝑐   𝑊,𝑎,𝑏,𝑐,𝑢,𝑣,𝑥,𝑦,𝑧   𝑢,𝑁,𝑥,𝑦,𝑧   𝑥,𝑂,𝑦,𝑧   𝑣,𝑡   𝑢,𝑉   𝑥,𝑣,𝑦,𝑧,𝑉   𝐷,𝑎,𝑏,𝑐   𝐸,𝑎,𝑏,𝑐   𝐹,𝑎,𝑏,𝑐,𝑢,𝑣   𝑡,𝑁   𝑈,𝑎,𝑏,𝑐,𝑣   𝑡,𝑉   𝑠,𝑎,𝑡,𝑏,𝑐,𝑥,𝑦,𝑧,𝑢,𝑣
Allowed substitution hints:   𝐷(𝑢,𝑡)   𝑈(𝑢)   𝐸(𝑣,𝑢,𝑡,𝑠)   𝐹(𝑥,𝑦,𝑧,𝑡,𝑠)   𝐺(𝑣,𝑢,𝑎,𝑏,𝑐)   𝑁(𝑣,𝑠)   𝑂(𝑣,𝑢,𝑡,𝑠)   𝑉(𝑠)

Proof of Theorem cdlemeg46fgN
StepHypRef Expression
1 simpl1 1188 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simpl3 1190 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
3 simpl2 1189 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
4 simprl 768 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑃𝑄)
54necomd 2988 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑄𝑃)
6 simprr 770 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
7 cdlemef46g.b . . 3 𝐵 = (Base‘𝐾)
8 cdlemef46g.l . . 3 = (le‘𝐾)
9 cdlemef46g.j . . 3 = (join‘𝐾)
10 cdlemef46g.m . . 3 = (meet‘𝐾)
11 cdlemef46g.a . . 3 𝐴 = (Atoms‘𝐾)
12 cdlemef46g.h . . 3 𝐻 = (LHyp‘𝐾)
13 cdlemef46.v . . 3 𝑉 = ((𝑄 𝑃) 𝑊)
14 cdlemef46.n . . 3 𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))
15 cdlemefs46.o . . 3 𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))
16 cdlemef46.g . . 3 𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))
17 cdlemef46g.u . . 3 𝑈 = ((𝑃 𝑄) 𝑊)
18 cdlemef46g.d . . 3 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
19 cdlemefs46g.e . . 3 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
20 cdlemef46g.f . . 3 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))
217, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20cdlemeg46gf 39860 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝑃 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝐹‘(𝐺𝑅)) = 𝑅)
221, 2, 3, 5, 6, 21syl32anc 1375 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝐹‘(𝐺𝑅)) = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1084   = wceq 1533  wcel 2098  wne 2932  wral 3053  csb 3885  ifcif 4520   class class class wbr 5138  cmpt 5221  cfv 6533  crio 7356  (class class class)co 7401  Basecbs 17142  lecple 17202  joincjn 18265  meetcmee 18266  Atomscatm 38589  HLchlt 38676  LHypclh 39311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-riotaBAD 38279
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-1st 7968  df-2nd 7969  df-undef 8253  df-proset 18249  df-poset 18267  df-plt 18284  df-lub 18300  df-glb 18301  df-join 18302  df-meet 18303  df-p0 18379  df-p1 18380  df-lat 18386  df-clat 18453  df-oposet 38502  df-ol 38504  df-oml 38505  df-covers 38592  df-ats 38593  df-atl 38624  df-cvlat 38648  df-hlat 38677  df-llines 38825  df-lplanes 38826  df-lvols 38827  df-lines 38828  df-psubsp 38830  df-pmap 38831  df-padd 39123  df-lhyp 39315
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator