Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemkyuu Structured version   Visualization version   GIF version

Theorem cdlemkyuu 38951
Description: cdlemkyu 38950 with some hypotheses eliminated. TODO: Clean all this up. (Contributed by NM, 21-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b 𝐵 = (Base‘𝐾)
cdlemk5.l = (le‘𝐾)
cdlemk5.j = (join‘𝐾)
cdlemk5.m = (meet‘𝐾)
cdlemk5.a 𝐴 = (Atoms‘𝐾)
cdlemk5.h 𝐻 = (LHyp‘𝐾)
cdlemk5.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk5.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk5.z 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
cdlemk5.y 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
cdlemk5c.s 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
cdlemk5a.u2 𝐶 = (𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑏)‘𝑃) (𝑅‘(𝑒𝑏))))))
Assertion
Ref Expression
cdlemkyuu ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → 𝐺 / 𝑔𝑌 = ((𝐶𝐺)‘𝑃))
Distinct variable groups:   ,𝑔   ,𝑔   𝐵,𝑔   𝑃,𝑔   𝑅,𝑔   𝑇,𝑔   𝑔,𝑍   𝑔,𝑏   𝑔,𝐺,𝑒   𝑓,𝑔,𝑖,𝑗,𝑒,   ,𝑖,𝑗   ,𝑒,𝑓,𝑖,𝑗   𝐴,𝑖,𝑗   𝑓,𝐹,𝑖,𝑗   𝑒,𝐺,𝑗   𝑖,𝐻,𝑗   𝑖,𝐾,𝑗   𝑓,𝑁,𝑖,𝑗   𝑃,𝑒,𝑓,𝑖,𝑗   𝑅,𝑒,𝑓,𝑖,𝑗   𝑒,𝑏,𝑗,𝑆   𝑇,𝑒,𝑓,𝑖,𝑗   𝑒,𝑊,𝑓,𝑖,𝑗   𝑓,𝑏,𝑖
Allowed substitution hints:   𝐴(𝑒,𝑓,𝑔,𝑏)   𝐵(𝑒,𝑓,𝑖,𝑗,𝑏)   𝐶(𝑒,𝑓,𝑔,𝑖,𝑗,𝑏)   𝑃(𝑏)   𝑅(𝑏)   𝑆(𝑓,𝑔,𝑖)   𝑇(𝑏)   𝐹(𝑒,𝑔,𝑏)   𝐺(𝑓,𝑖,𝑏)   𝐻(𝑒,𝑓,𝑔,𝑏)   (𝑏)   𝐾(𝑒,𝑓,𝑔,𝑏)   (𝑒,𝑓,𝑔,𝑏)   (𝑏)   𝑁(𝑒,𝑔,𝑏)   𝑊(𝑔,𝑏)   𝑌(𝑒,𝑓,𝑔,𝑖,𝑗,𝑏)   𝑍(𝑒,𝑓,𝑖,𝑗,𝑏)

Proof of Theorem cdlemkyuu
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 cdlemk5.b . 2 𝐵 = (Base‘𝐾)
2 cdlemk5.l . 2 = (le‘𝐾)
3 cdlemk5.j . 2 = (join‘𝐾)
4 cdlemk5.m . 2 = (meet‘𝐾)
5 cdlemk5.a . 2 𝐴 = (Atoms‘𝐾)
6 cdlemk5.h . 2 𝐻 = (LHyp‘𝐾)
7 cdlemk5.t . 2 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 cdlemk5.r . 2 𝑅 = ((trL‘𝐾)‘𝑊)
9 cdlemk5.z . 2 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
10 cdlemk5.y . 2 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
11 cdlemk5c.s . 2 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
12 eqid 2740 . 2 (𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑)))))) = (𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))
13 eqid 2740 . 2 (𝑆𝑏) = (𝑆𝑏)
14 cdlemk5a.u2 . 2 𝐶 = (𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑏)‘𝑃) (𝑅‘(𝑒𝑏))))))
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14cdlemkyu 38950 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → 𝐺 / 𝑔𝑌 = ((𝐶𝐺)‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1542  wcel 2110  wne 2945  csb 3837   class class class wbr 5079  cmpt 5162   I cid 5489  ccnv 5589  cres 5592  ccom 5594  cfv 6432  crio 7228  (class class class)co 7272  cmpo 7274  Basecbs 16923  lecple 16980  joincjn 18040  meetcmee 18041  Atomscatm 37286  HLchlt 37373  LHypclh 38007  LTrncltrn 38124  trLctrl 38181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-riotaBAD 36976
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7229  df-ov 7275  df-oprab 7276  df-mpo 7277  df-1st 7825  df-2nd 7826  df-undef 8081  df-map 8609  df-proset 18024  df-poset 18042  df-plt 18059  df-lub 18075  df-glb 18076  df-join 18077  df-meet 18078  df-p0 18154  df-p1 18155  df-lat 18161  df-clat 18228  df-oposet 37199  df-ol 37201  df-oml 37202  df-covers 37289  df-ats 37290  df-atl 37321  df-cvlat 37345  df-hlat 37374  df-llines 37521  df-lplanes 37522  df-lvols 37523  df-lines 37524  df-psubsp 37526  df-pmap 37527  df-padd 37819  df-lhyp 38011  df-laut 38012  df-ldil 38127  df-ltrn 38128  df-trl 38182
This theorem is referenced by:  cdlemk11ta  38952  cdlemk19ylem  38953
  Copyright terms: Public domain W3C validator