![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemkyuu | Structured version Visualization version GIF version |
Description: cdlemkyu 39884 with some hypotheses eliminated. TODO: Clean all this up. (Contributed by NM, 21-Jul-2013.) |
Ref | Expression |
---|---|
cdlemk5.b | β’ π΅ = (BaseβπΎ) |
cdlemk5.l | β’ β€ = (leβπΎ) |
cdlemk5.j | β’ β¨ = (joinβπΎ) |
cdlemk5.m | β’ β§ = (meetβπΎ) |
cdlemk5.a | β’ π΄ = (AtomsβπΎ) |
cdlemk5.h | β’ π» = (LHypβπΎ) |
cdlemk5.t | β’ π = ((LTrnβπΎ)βπ) |
cdlemk5.r | β’ π = ((trLβπΎ)βπ) |
cdlemk5.z | β’ π = ((π β¨ (π βπ)) β§ ((πβπ) β¨ (π β(π β β‘πΉ)))) |
cdlemk5.y | β’ π = ((π β¨ (π βπ)) β§ (π β¨ (π β(π β β‘π)))) |
cdlemk5c.s | β’ π = (π β π β¦ (β©π β π (πβπ) = ((π β¨ (π βπ)) β§ ((πβπ) β¨ (π β(π β β‘πΉ)))))) |
cdlemk5a.u2 | β’ πΆ = (π β π β¦ (β©π β π (πβπ) = ((π β¨ (π βπ)) β§ (((πβπ)βπ) β¨ (π β(π β β‘π)))))) |
Ref | Expression |
---|---|
cdlemkyuu | β’ ((((πΎ β HL β§ π β π») β§ (πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅))) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π) β§ (π βπΉ) = (π βπ)) β§ (π β π β§ (π β ( I βΎ π΅) β§ (π βπ) β (π βπΉ) β§ (π βπ) β (π βπΊ)))) β β¦πΊ / πβ¦π = ((πΆβπΊ)βπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemk5.b | . 2 β’ π΅ = (BaseβπΎ) | |
2 | cdlemk5.l | . 2 β’ β€ = (leβπΎ) | |
3 | cdlemk5.j | . 2 β’ β¨ = (joinβπΎ) | |
4 | cdlemk5.m | . 2 β’ β§ = (meetβπΎ) | |
5 | cdlemk5.a | . 2 β’ π΄ = (AtomsβπΎ) | |
6 | cdlemk5.h | . 2 β’ π» = (LHypβπΎ) | |
7 | cdlemk5.t | . 2 β’ π = ((LTrnβπΎ)βπ) | |
8 | cdlemk5.r | . 2 β’ π = ((trLβπΎ)βπ) | |
9 | cdlemk5.z | . 2 β’ π = ((π β¨ (π βπ)) β§ ((πβπ) β¨ (π β(π β β‘πΉ)))) | |
10 | cdlemk5.y | . 2 β’ π = ((π β¨ (π βπ)) β§ (π β¨ (π β(π β β‘π)))) | |
11 | cdlemk5c.s | . 2 β’ π = (π β π β¦ (β©π β π (πβπ) = ((π β¨ (π βπ)) β§ ((πβπ) β¨ (π β(π β β‘πΉ)))))) | |
12 | eqid 2732 | . 2 β’ (π β π, π β π β¦ (β©π β π (πβπ) = ((π β¨ (π βπ)) β§ (((πβπ)βπ) β¨ (π β(π β β‘π)))))) = (π β π, π β π β¦ (β©π β π (πβπ) = ((π β¨ (π βπ)) β§ (((πβπ)βπ) β¨ (π β(π β β‘π)))))) | |
13 | eqid 2732 | . 2 β’ (πβπ) = (πβπ) | |
14 | cdlemk5a.u2 | . 2 β’ πΆ = (π β π β¦ (β©π β π (πβπ) = ((π β¨ (π βπ)) β§ (((πβπ)βπ) β¨ (π β(π β β‘π)))))) | |
15 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 | cdlemkyu 39884 | 1 β’ ((((πΎ β HL β§ π β π») β§ (πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅))) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π) β§ (π βπΉ) = (π βπ)) β§ (π β π β§ (π β ( I βΎ π΅) β§ (π βπ) β (π βπΉ) β§ (π βπ) β (π βπΊ)))) β β¦πΊ / πβ¦π = ((πΆβπΊ)βπ)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 β wne 2940 β¦csb 3893 class class class wbr 5148 β¦ cmpt 5231 I cid 5573 β‘ccnv 5675 βΎ cres 5678 β ccom 5680 βcfv 6543 β©crio 7366 (class class class)co 7411 β cmpo 7413 Basecbs 17146 lecple 17206 joincjn 18266 meetcmee 18267 Atomscatm 38219 HLchlt 38306 LHypclh 38941 LTrncltrn 39058 trLctrl 39115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-riotaBAD 37909 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-undef 8260 df-map 8824 df-proset 18250 df-poset 18268 df-plt 18285 df-lub 18301 df-glb 18302 df-join 18303 df-meet 18304 df-p0 18380 df-p1 18381 df-lat 18387 df-clat 18454 df-oposet 38132 df-ol 38134 df-oml 38135 df-covers 38222 df-ats 38223 df-atl 38254 df-cvlat 38278 df-hlat 38307 df-llines 38455 df-lplanes 38456 df-lvols 38457 df-lines 38458 df-psubsp 38460 df-pmap 38461 df-padd 38753 df-lhyp 38945 df-laut 38946 df-ldil 39061 df-ltrn 39062 df-trl 39116 |
This theorem is referenced by: cdlemk11ta 39886 cdlemk19ylem 39887 |
Copyright terms: Public domain | W3C validator |