Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemkyuu | Structured version Visualization version GIF version |
Description: cdlemkyu 38847 with some hypotheses eliminated. TODO: Clean all this up. (Contributed by NM, 21-Jul-2013.) |
Ref | Expression |
---|---|
cdlemk5.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemk5.l | ⊢ ≤ = (le‘𝐾) |
cdlemk5.j | ⊢ ∨ = (join‘𝐾) |
cdlemk5.m | ⊢ ∧ = (meet‘𝐾) |
cdlemk5.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemk5.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemk5.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemk5.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
cdlemk5.z | ⊢ 𝑍 = ((𝑃 ∨ (𝑅‘𝑏)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑏 ∘ ◡𝐹)))) |
cdlemk5.y | ⊢ 𝑌 = ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) |
cdlemk5c.s | ⊢ 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))))) |
cdlemk5a.u2 | ⊢ 𝐶 = (𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ (((𝑆‘𝑏)‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝑏)))))) |
Ref | Expression |
---|---|
cdlemkyuu | ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝑏 ∈ 𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)))) → ⦋𝐺 / 𝑔⦌𝑌 = ((𝐶‘𝐺)‘𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemk5.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
2 | cdlemk5.l | . 2 ⊢ ≤ = (le‘𝐾) | |
3 | cdlemk5.j | . 2 ⊢ ∨ = (join‘𝐾) | |
4 | cdlemk5.m | . 2 ⊢ ∧ = (meet‘𝐾) | |
5 | cdlemk5.a | . 2 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | cdlemk5.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | cdlemk5.t | . 2 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
8 | cdlemk5.r | . 2 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
9 | cdlemk5.z | . 2 ⊢ 𝑍 = ((𝑃 ∨ (𝑅‘𝑏)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑏 ∘ ◡𝐹)))) | |
10 | cdlemk5.y | . 2 ⊢ 𝑌 = ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) | |
11 | cdlemk5c.s | . 2 ⊢ 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))))) | |
12 | eqid 2739 | . 2 ⊢ (𝑑 ∈ 𝑇, 𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ (((𝑆‘𝑑)‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝑑)))))) = (𝑑 ∈ 𝑇, 𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ (((𝑆‘𝑑)‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝑑)))))) | |
13 | eqid 2739 | . 2 ⊢ (𝑆‘𝑏) = (𝑆‘𝑏) | |
14 | cdlemk5a.u2 | . 2 ⊢ 𝐶 = (𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ (((𝑆‘𝑏)‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝑏)))))) | |
15 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 | cdlemkyu 38847 | 1 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝑏 ∈ 𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)))) → ⦋𝐺 / 𝑔⦌𝑌 = ((𝐶‘𝐺)‘𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2112 ≠ wne 2943 ⦋csb 3829 class class class wbr 5070 ↦ cmpt 5152 I cid 5478 ◡ccnv 5578 ↾ cres 5581 ∘ ccom 5583 ‘cfv 6415 ℩crio 7208 (class class class)co 7252 ∈ cmpo 7254 Basecbs 16815 lecple 16870 joincjn 17919 meetcmee 17920 Atomscatm 37183 HLchlt 37270 LHypclh 37904 LTrncltrn 38021 trLctrl 38078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5203 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-riotaBAD 36873 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5153 df-id 5479 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-riota 7209 df-ov 7255 df-oprab 7256 df-mpo 7257 df-1st 7801 df-2nd 7802 df-undef 8057 df-map 8552 df-proset 17903 df-poset 17921 df-plt 17938 df-lub 17954 df-glb 17955 df-join 17956 df-meet 17957 df-p0 18033 df-p1 18034 df-lat 18040 df-clat 18107 df-oposet 37096 df-ol 37098 df-oml 37099 df-covers 37186 df-ats 37187 df-atl 37218 df-cvlat 37242 df-hlat 37271 df-llines 37418 df-lplanes 37419 df-lvols 37420 df-lines 37421 df-psubsp 37423 df-pmap 37424 df-padd 37716 df-lhyp 37908 df-laut 37909 df-ldil 38024 df-ltrn 38025 df-trl 38079 |
This theorem is referenced by: cdlemk11ta 38849 cdlemk19ylem 38850 |
Copyright terms: Public domain | W3C validator |