| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmpt1res | Structured version Visualization version GIF version | ||
| Description: The restriction of a continuous function to a subset is continuous. (Contributed by Mario Carneiro, 5-Jun-2014.) |
| Ref | Expression |
|---|---|
| cnmpt1res.2 | ⊢ 𝐾 = (𝐽 ↾t 𝑌) |
| cnmpt1res.3 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| cnmpt1res.5 | ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
| cnmpt1res.6 | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐿)) |
| Ref | Expression |
|---|---|
| cnmpt1res | ⊢ (𝜑 → (𝑥 ∈ 𝑌 ↦ 𝐴) ∈ (𝐾 Cn 𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmpt1res.5 | . . 3 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) | |
| 2 | 1 | resmptd 5988 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌) = (𝑥 ∈ 𝑌 ↦ 𝐴)) |
| 3 | cnmpt1res.6 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐿)) | |
| 4 | cnmpt1res.3 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 5 | toponuni 22829 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
| 6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
| 7 | 1, 6 | sseqtrd 3966 | . . . 4 ⊢ (𝜑 → 𝑌 ⊆ ∪ 𝐽) |
| 8 | eqid 2731 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 9 | 8 | cnrest 23200 | . . . 4 ⊢ (((𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐿) ∧ 𝑌 ⊆ ∪ 𝐽) → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌) ∈ ((𝐽 ↾t 𝑌) Cn 𝐿)) |
| 10 | 3, 7, 9 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌) ∈ ((𝐽 ↾t 𝑌) Cn 𝐿)) |
| 11 | cnmpt1res.2 | . . . 4 ⊢ 𝐾 = (𝐽 ↾t 𝑌) | |
| 12 | 11 | oveq1i 7356 | . . 3 ⊢ (𝐾 Cn 𝐿) = ((𝐽 ↾t 𝑌) Cn 𝐿) |
| 13 | 10, 12 | eleqtrrdi 2842 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌) ∈ (𝐾 Cn 𝐿)) |
| 14 | 2, 13 | eqeltrrd 2832 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑌 ↦ 𝐴) ∈ (𝐾 Cn 𝐿)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ∪ cuni 4856 ↦ cmpt 5170 ↾ cres 5616 ‘cfv 6481 (class class class)co 7346 ↾t crest 17324 TopOnctopon 22825 Cn ccn 23139 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-map 8752 df-en 8870 df-fin 8873 df-fi 9295 df-rest 17326 df-topgen 17347 df-top 22809 df-topon 22826 df-bases 22861 df-cn 23142 |
| This theorem is referenced by: subgtgp 24020 symgtgp 24021 cnmptre 24848 evth2 24886 pcoass 24951 efrlim 26906 efrlimOLD 26907 ipasslem7 30816 cvxpconn 35286 cvmliftlem8 35336 |
| Copyright terms: Public domain | W3C validator |