MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt1res Structured version   Visualization version   GIF version

Theorem cnmpt1res 22286
Description: The restriction of a continuous function to a subset is continuous. (Contributed by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
cnmpt1res.2 𝐾 = (𝐽t 𝑌)
cnmpt1res.3 (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt1res.5 (𝜑𝑌𝑋)
cnmpt1res.6 (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐿))
Assertion
Ref Expression
cnmpt1res (𝜑 → (𝑥𝑌𝐴) ∈ (𝐾 Cn 𝐿))
Distinct variable groups:   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐽(𝑥)   𝐾(𝑥)   𝐿(𝑥)

Proof of Theorem cnmpt1res
StepHypRef Expression
1 cnmpt1res.5 . . 3 (𝜑𝑌𝑋)
21resmptd 5910 . 2 (𝜑 → ((𝑥𝑋𝐴) ↾ 𝑌) = (𝑥𝑌𝐴))
3 cnmpt1res.6 . . . 4 (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐿))
4 cnmpt1res.3 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
5 toponuni 21524 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
64, 5syl 17 . . . . 5 (𝜑𝑋 = 𝐽)
71, 6sseqtrd 4009 . . . 4 (𝜑𝑌 𝐽)
8 eqid 2823 . . . . 5 𝐽 = 𝐽
98cnrest 21895 . . . 4 (((𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐿) ∧ 𝑌 𝐽) → ((𝑥𝑋𝐴) ↾ 𝑌) ∈ ((𝐽t 𝑌) Cn 𝐿))
103, 7, 9syl2anc 586 . . 3 (𝜑 → ((𝑥𝑋𝐴) ↾ 𝑌) ∈ ((𝐽t 𝑌) Cn 𝐿))
11 cnmpt1res.2 . . . 4 𝐾 = (𝐽t 𝑌)
1211oveq1i 7168 . . 3 (𝐾 Cn 𝐿) = ((𝐽t 𝑌) Cn 𝐿)
1310, 12eleqtrrdi 2926 . 2 (𝜑 → ((𝑥𝑋𝐴) ↾ 𝑌) ∈ (𝐾 Cn 𝐿))
142, 13eqeltrrd 2916 1 (𝜑 → (𝑥𝑌𝐴) ∈ (𝐾 Cn 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  wss 3938   cuni 4840  cmpt 5148  cres 5559  cfv 6357  (class class class)co 7158  t crest 16696  TopOnctopon 21520   Cn ccn 21834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-fin 8515  df-fi 8877  df-rest 16698  df-topgen 16719  df-top 21504  df-topon 21521  df-bases 21556  df-cn 21837
This theorem is referenced by:  subgtgp  22715  symgtgp  22716  cnmptre  23533  evth2  23566  pcoass  23630  efrlim  25549  ipasslem7  28615  cvxpconn  32491  cvmliftlem8  32541
  Copyright terms: Public domain W3C validator