MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt1res Structured version   Visualization version   GIF version

Theorem cnmpt1res 23700
Description: The restriction of a continuous function to a subset is continuous. (Contributed by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
cnmpt1res.2 𝐾 = (𝐽t 𝑌)
cnmpt1res.3 (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt1res.5 (𝜑𝑌𝑋)
cnmpt1res.6 (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐿))
Assertion
Ref Expression
cnmpt1res (𝜑 → (𝑥𝑌𝐴) ∈ (𝐾 Cn 𝐿))
Distinct variable groups:   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐽(𝑥)   𝐾(𝑥)   𝐿(𝑥)

Proof of Theorem cnmpt1res
StepHypRef Expression
1 cnmpt1res.5 . . 3 (𝜑𝑌𝑋)
21resmptd 6060 . 2 (𝜑 → ((𝑥𝑋𝐴) ↾ 𝑌) = (𝑥𝑌𝐴))
3 cnmpt1res.6 . . . 4 (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐿))
4 cnmpt1res.3 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
5 toponuni 22936 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
64, 5syl 17 . . . . 5 (𝜑𝑋 = 𝐽)
71, 6sseqtrd 4036 . . . 4 (𝜑𝑌 𝐽)
8 eqid 2735 . . . . 5 𝐽 = 𝐽
98cnrest 23309 . . . 4 (((𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐿) ∧ 𝑌 𝐽) → ((𝑥𝑋𝐴) ↾ 𝑌) ∈ ((𝐽t 𝑌) Cn 𝐿))
103, 7, 9syl2anc 584 . . 3 (𝜑 → ((𝑥𝑋𝐴) ↾ 𝑌) ∈ ((𝐽t 𝑌) Cn 𝐿))
11 cnmpt1res.2 . . . 4 𝐾 = (𝐽t 𝑌)
1211oveq1i 7441 . . 3 (𝐾 Cn 𝐿) = ((𝐽t 𝑌) Cn 𝐿)
1310, 12eleqtrrdi 2850 . 2 (𝜑 → ((𝑥𝑋𝐴) ↾ 𝑌) ∈ (𝐾 Cn 𝐿))
142, 13eqeltrrd 2840 1 (𝜑 → (𝑥𝑌𝐴) ∈ (𝐾 Cn 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  wss 3963   cuni 4912  cmpt 5231  cres 5691  cfv 6563  (class class class)co 7431  t crest 17467  TopOnctopon 22932   Cn ccn 23248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-map 8867  df-en 8985  df-fin 8988  df-fi 9449  df-rest 17469  df-topgen 17490  df-top 22916  df-topon 22933  df-bases 22969  df-cn 23251
This theorem is referenced by:  subgtgp  24129  symgtgp  24130  cnmptre  24968  evth2  25006  pcoass  25071  efrlim  27027  efrlimOLD  27028  ipasslem7  30865  cvxpconn  35227  cvmliftlem8  35277
  Copyright terms: Public domain W3C validator