![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnmpt1res | Structured version Visualization version GIF version |
Description: The restriction of a continuous function to a subset is continuous. (Contributed by Mario Carneiro, 5-Jun-2014.) |
Ref | Expression |
---|---|
cnmpt1res.2 | β’ πΎ = (π½ βΎt π) |
cnmpt1res.3 | β’ (π β π½ β (TopOnβπ)) |
cnmpt1res.5 | β’ (π β π β π) |
cnmpt1res.6 | β’ (π β (π₯ β π β¦ π΄) β (π½ Cn πΏ)) |
Ref | Expression |
---|---|
cnmpt1res | β’ (π β (π₯ β π β¦ π΄) β (πΎ Cn πΏ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmpt1res.5 | . . 3 β’ (π β π β π) | |
2 | 1 | resmptd 6040 | . 2 β’ (π β ((π₯ β π β¦ π΄) βΎ π) = (π₯ β π β¦ π΄)) |
3 | cnmpt1res.6 | . . . 4 β’ (π β (π₯ β π β¦ π΄) β (π½ Cn πΏ)) | |
4 | cnmpt1res.3 | . . . . . 6 β’ (π β π½ β (TopOnβπ)) | |
5 | toponuni 22415 | . . . . . 6 β’ (π½ β (TopOnβπ) β π = βͺ π½) | |
6 | 4, 5 | syl 17 | . . . . 5 β’ (π β π = βͺ π½) |
7 | 1, 6 | sseqtrd 4022 | . . . 4 β’ (π β π β βͺ π½) |
8 | eqid 2732 | . . . . 5 β’ βͺ π½ = βͺ π½ | |
9 | 8 | cnrest 22788 | . . . 4 β’ (((π₯ β π β¦ π΄) β (π½ Cn πΏ) β§ π β βͺ π½) β ((π₯ β π β¦ π΄) βΎ π) β ((π½ βΎt π) Cn πΏ)) |
10 | 3, 7, 9 | syl2anc 584 | . . 3 β’ (π β ((π₯ β π β¦ π΄) βΎ π) β ((π½ βΎt π) Cn πΏ)) |
11 | cnmpt1res.2 | . . . 4 β’ πΎ = (π½ βΎt π) | |
12 | 11 | oveq1i 7418 | . . 3 β’ (πΎ Cn πΏ) = ((π½ βΎt π) Cn πΏ) |
13 | 10, 12 | eleqtrrdi 2844 | . 2 β’ (π β ((π₯ β π β¦ π΄) βΎ π) β (πΎ Cn πΏ)) |
14 | 2, 13 | eqeltrrd 2834 | 1 β’ (π β (π₯ β π β¦ π΄) β (πΎ Cn πΏ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 β wss 3948 βͺ cuni 4908 β¦ cmpt 5231 βΎ cres 5678 βcfv 6543 (class class class)co 7408 βΎt crest 17365 TopOnctopon 22411 Cn ccn 22727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-map 8821 df-en 8939 df-fin 8942 df-fi 9405 df-rest 17367 df-topgen 17388 df-top 22395 df-topon 22412 df-bases 22448 df-cn 22730 |
This theorem is referenced by: subgtgp 23608 symgtgp 23609 cnmptre 24442 evth2 24475 pcoass 24539 efrlim 26471 ipasslem7 30084 cvxpconn 34228 cvmliftlem8 34278 |
Copyright terms: Public domain | W3C validator |