MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofcutr2d Structured version   Visualization version   GIF version

Theorem cofcutr2d 27761
Description: If 𝑋 is the cut of ðī and ðĩ, then ðĩ is coinitial with ( R ‘𝑋). Second half of theorem 2.9 of [Gonshor] p. 12. (Contributed by Scott Fenton, 25-Sep-2024.)
Hypotheses
Ref Expression
cofcutrd.1 (𝜑 → ðī <<s ðĩ)
cofcutrd.2 (𝜑 → 𝑋 = (ðī |s ðĩ))
Assertion
Ref Expression
cofcutr2d (𝜑 → ∀𝑧 ∈ ( R ‘𝑋)∃ð‘Ī ∈ ðĩ ð‘Ī â‰Īs 𝑧)
Distinct variable groups:   ð‘Ī,ðī,𝑧   ð‘Ī,ðĩ,𝑧   ð‘Ī,𝑋,𝑧
Allowed substitution hints:   𝜑(𝑧,ð‘Ī)

Proof of Theorem cofcutr2d
Dummy variables ð‘Ĩ ð‘Ķ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cofcutrd.1 . . 3 (𝜑 → ðī <<s ðĩ)
2 cofcutrd.2 . . 3 (𝜑 → 𝑋 = (ðī |s ðĩ))
3 cofcutr 27759 . . 3 ((ðī <<s ðĩ ∧ 𝑋 = (ðī |s ðĩ)) → (∀ð‘Ĩ ∈ ( L ‘𝑋)∃ð‘Ķ ∈ ðī ð‘Ĩ â‰Īs ð‘Ķ ∧ ∀𝑧 ∈ ( R ‘𝑋)∃ð‘Ī ∈ ðĩ ð‘Ī â‰Īs 𝑧))
41, 2, 3syl2anc 583 . 2 (𝜑 → (∀ð‘Ĩ ∈ ( L ‘𝑋)∃ð‘Ķ ∈ ðī ð‘Ĩ â‰Īs ð‘Ķ ∧ ∀𝑧 ∈ ( R ‘𝑋)∃ð‘Ī ∈ ðĩ ð‘Ī â‰Īs 𝑧))
54simprd 495 1 (𝜑 → ∀𝑧 ∈ ( R ‘𝑋)∃ð‘Ī ∈ ðĩ ð‘Ī â‰Īs 𝑧)
Colors of variables: wff setvar class
Syntax hints:   → wi 4   ∧ wa 395   = wceq 1533  âˆ€wral 3053  âˆƒwrex 3062   class class class wbr 5138  â€˜cfv 6533  (class class class)co 7401   â‰Īs csle 27592   <<s csslt 27628   |s cscut 27630   L cleft 27687   R cright 27688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-1o 8461  df-2o 8462  df-no 27491  df-slt 27492  df-bday 27493  df-sle 27593  df-sslt 27629  df-scut 27631  df-made 27689  df-old 27690  df-left 27692  df-right 27693
This theorem is referenced by:  addsuniflem  27833  negsunif  27882  mulsuniflem  27964  elons2  28066
  Copyright terms: Public domain W3C validator