MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofcutr2d Structured version   Visualization version   GIF version

Theorem cofcutr2d 27896
Description: If 𝑋 is the cut of 𝐴 and 𝐵, then 𝐵 is coinitial with ( R ‘𝑋). Second half of theorem 2.9 of [Gonshor] p. 12. (Contributed by Scott Fenton, 25-Sep-2024.)
Hypotheses
Ref Expression
cofcutrd.1 (𝜑𝐴 <<s 𝐵)
cofcutrd.2 (𝜑𝑋 = (𝐴 |s 𝐵))
Assertion
Ref Expression
cofcutr2d (𝜑 → ∀𝑧 ∈ ( R ‘𝑋)∃𝑤𝐵 𝑤 ≤s 𝑧)
Distinct variable groups:   𝑤,𝐴,𝑧   𝑤,𝐵,𝑧   𝑤,𝑋,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤)

Proof of Theorem cofcutr2d
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cofcutrd.1 . . 3 (𝜑𝐴 <<s 𝐵)
2 cofcutrd.2 . . 3 (𝜑𝑋 = (𝐴 |s 𝐵))
3 cofcutr 27894 . . 3 ((𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) → (∀𝑥 ∈ ( L ‘𝑋)∃𝑦𝐴 𝑥 ≤s 𝑦 ∧ ∀𝑧 ∈ ( R ‘𝑋)∃𝑤𝐵 𝑤 ≤s 𝑧))
41, 2, 3syl2anc 584 . 2 (𝜑 → (∀𝑥 ∈ ( L ‘𝑋)∃𝑦𝐴 𝑥 ≤s 𝑦 ∧ ∀𝑧 ∈ ( R ‘𝑋)∃𝑤𝐵 𝑤 ≤s 𝑧))
54simprd 495 1 (𝜑 → ∀𝑧 ∈ ( R ‘𝑋)∃𝑤𝐵 𝑤 ≤s 𝑧)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wral 3050  wrex 3059   class class class wbr 5123  cfv 6541  (class class class)co 7413   ≤s csle 27725   <<s csslt 27761   |s cscut 27763   L cleft 27820   R cright 27821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-1o 8488  df-2o 8489  df-no 27623  df-slt 27624  df-bday 27625  df-sle 27726  df-sslt 27762  df-scut 27764  df-made 27822  df-old 27823  df-left 27825  df-right 27826
This theorem is referenced by:  addsuniflem  27970  negsunif  28023  mulsuniflem  28111  elons2  28217
  Copyright terms: Public domain W3C validator