MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colinearalglem1 Structured version   Visualization version   GIF version

Theorem colinearalglem1 28939
Description: Lemma for colinearalg 28943. Expand out a multiplication. (Contributed by Scott Fenton, 24-Jun-2013.)
Assertion
Ref Expression
colinearalglem1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (((𝐵𝐴) · (𝐹𝐷)) = ((𝐸𝐷) · (𝐶𝐴)) ↔ ((𝐵 · 𝐹) − ((𝐴 · 𝐹) + (𝐵 · 𝐷))) = ((𝐶 · 𝐸) − ((𝐴 · 𝐸) + (𝐶 · 𝐷)))))

Proof of Theorem colinearalglem1
StepHypRef Expression
1 simpl2 1192 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → 𝐵 ∈ ℂ)
2 simpl1 1191 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → 𝐴 ∈ ℂ)
31, 2subcld 11647 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (𝐵𝐴) ∈ ℂ)
4 simpr3 1196 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → 𝐹 ∈ ℂ)
5 simpr1 1194 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → 𝐷 ∈ ℂ)
63, 4, 5subdid 11746 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((𝐵𝐴) · (𝐹𝐷)) = (((𝐵𝐴) · 𝐹) − ((𝐵𝐴) · 𝐷)))
71, 2, 4subdird 11747 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((𝐵𝐴) · 𝐹) = ((𝐵 · 𝐹) − (𝐴 · 𝐹)))
81, 2, 5subdird 11747 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((𝐵𝐴) · 𝐷) = ((𝐵 · 𝐷) − (𝐴 · 𝐷)))
97, 8oveq12d 7466 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (((𝐵𝐴) · 𝐹) − ((𝐵𝐴) · 𝐷)) = (((𝐵 · 𝐹) − (𝐴 · 𝐹)) − ((𝐵 · 𝐷) − (𝐴 · 𝐷))))
10 simp2 1137 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐵 ∈ ℂ)
11 simp3 1138 . . . . . . . 8 ((𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ) → 𝐹 ∈ ℂ)
12 mulcl 11268 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝐹 ∈ ℂ) → (𝐵 · 𝐹) ∈ ℂ)
1310, 11, 12syl2an 595 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (𝐵 · 𝐹) ∈ ℂ)
14 simp1 1136 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐴 ∈ ℂ)
15 mulcl 11268 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐹 ∈ ℂ) → (𝐴 · 𝐹) ∈ ℂ)
1614, 11, 15syl2an 595 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (𝐴 · 𝐹) ∈ ℂ)
1713, 16subcld 11647 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((𝐵 · 𝐹) − (𝐴 · 𝐹)) ∈ ℂ)
18 simp1 1136 . . . . . . 7 ((𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ) → 𝐷 ∈ ℂ)
19 mulcl 11268 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐵 · 𝐷) ∈ ℂ)
2010, 18, 19syl2an 595 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (𝐵 · 𝐷) ∈ ℂ)
21 mulcl 11268 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐴 · 𝐷) ∈ ℂ)
2214, 18, 21syl2an 595 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (𝐴 · 𝐷) ∈ ℂ)
2317, 20, 22subsub3d 11677 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (((𝐵 · 𝐹) − (𝐴 · 𝐹)) − ((𝐵 · 𝐷) − (𝐴 · 𝐷))) = ((((𝐵 · 𝐹) − (𝐴 · 𝐹)) + (𝐴 · 𝐷)) − (𝐵 · 𝐷)))
2417, 22, 20addsubd 11668 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((((𝐵 · 𝐹) − (𝐴 · 𝐹)) + (𝐴 · 𝐷)) − (𝐵 · 𝐷)) = ((((𝐵 · 𝐹) − (𝐴 · 𝐹)) − (𝐵 · 𝐷)) + (𝐴 · 𝐷)))
259, 23, 243eqtrrd 2785 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((((𝐵 · 𝐹) − (𝐴 · 𝐹)) − (𝐵 · 𝐷)) + (𝐴 · 𝐷)) = (((𝐵𝐴) · 𝐹) − ((𝐵𝐴) · 𝐷)))
2613, 16, 20subsub4d 11678 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (((𝐵 · 𝐹) − (𝐴 · 𝐹)) − (𝐵 · 𝐷)) = ((𝐵 · 𝐹) − ((𝐴 · 𝐹) + (𝐵 · 𝐷))))
2726oveq1d 7463 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((((𝐵 · 𝐹) − (𝐴 · 𝐹)) − (𝐵 · 𝐷)) + (𝐴 · 𝐷)) = (((𝐵 · 𝐹) − ((𝐴 · 𝐹) + (𝐵 · 𝐷))) + (𝐴 · 𝐷)))
286, 25, 273eqtr2d 2786 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((𝐵𝐴) · (𝐹𝐷)) = (((𝐵 · 𝐹) − ((𝐴 · 𝐹) + (𝐵 · 𝐷))) + (𝐴 · 𝐷)))
29 simpr2 1195 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → 𝐸 ∈ ℂ)
3029, 5subcld 11647 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (𝐸𝐷) ∈ ℂ)
31 simpl3 1193 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → 𝐶 ∈ ℂ)
3231, 2subcld 11647 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (𝐶𝐴) ∈ ℂ)
3330, 32mulcomd 11311 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((𝐸𝐷) · (𝐶𝐴)) = ((𝐶𝐴) · (𝐸𝐷)))
3432, 29, 5subdid 11746 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((𝐶𝐴) · (𝐸𝐷)) = (((𝐶𝐴) · 𝐸) − ((𝐶𝐴) · 𝐷)))
3531, 2, 29subdird 11747 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((𝐶𝐴) · 𝐸) = ((𝐶 · 𝐸) − (𝐴 · 𝐸)))
3631, 2, 5subdird 11747 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((𝐶𝐴) · 𝐷) = ((𝐶 · 𝐷) − (𝐴 · 𝐷)))
3735, 36oveq12d 7466 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (((𝐶𝐴) · 𝐸) − ((𝐶𝐴) · 𝐷)) = (((𝐶 · 𝐸) − (𝐴 · 𝐸)) − ((𝐶 · 𝐷) − (𝐴 · 𝐷))))
38 simp3 1138 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐶 ∈ ℂ)
39 simp2 1137 . . . . . . . . 9 ((𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ) → 𝐸 ∈ ℂ)
40 mulcl 11268 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ 𝐸 ∈ ℂ) → (𝐶 · 𝐸) ∈ ℂ)
4138, 39, 40syl2an 595 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (𝐶 · 𝐸) ∈ ℂ)
42 mulcl 11268 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐸 ∈ ℂ) → (𝐴 · 𝐸) ∈ ℂ)
4314, 39, 42syl2an 595 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (𝐴 · 𝐸) ∈ ℂ)
4441, 43subcld 11647 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((𝐶 · 𝐸) − (𝐴 · 𝐸)) ∈ ℂ)
45 mulcl 11268 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 · 𝐷) ∈ ℂ)
4638, 18, 45syl2an 595 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (𝐶 · 𝐷) ∈ ℂ)
4744, 46, 22subsub3d 11677 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (((𝐶 · 𝐸) − (𝐴 · 𝐸)) − ((𝐶 · 𝐷) − (𝐴 · 𝐷))) = ((((𝐶 · 𝐸) − (𝐴 · 𝐸)) + (𝐴 · 𝐷)) − (𝐶 · 𝐷)))
4844, 22, 46addsubd 11668 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((((𝐶 · 𝐸) − (𝐴 · 𝐸)) + (𝐴 · 𝐷)) − (𝐶 · 𝐷)) = ((((𝐶 · 𝐸) − (𝐴 · 𝐸)) − (𝐶 · 𝐷)) + (𝐴 · 𝐷)))
4937, 47, 483eqtrrd 2785 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((((𝐶 · 𝐸) − (𝐴 · 𝐸)) − (𝐶 · 𝐷)) + (𝐴 · 𝐷)) = (((𝐶𝐴) · 𝐸) − ((𝐶𝐴) · 𝐷)))
5041, 43, 46subsub4d 11678 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (((𝐶 · 𝐸) − (𝐴 · 𝐸)) − (𝐶 · 𝐷)) = ((𝐶 · 𝐸) − ((𝐴 · 𝐸) + (𝐶 · 𝐷))))
5150oveq1d 7463 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((((𝐶 · 𝐸) − (𝐴 · 𝐸)) − (𝐶 · 𝐷)) + (𝐴 · 𝐷)) = (((𝐶 · 𝐸) − ((𝐴 · 𝐸) + (𝐶 · 𝐷))) + (𝐴 · 𝐷)))
5249, 51eqtr3d 2782 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (((𝐶𝐴) · 𝐸) − ((𝐶𝐴) · 𝐷)) = (((𝐶 · 𝐸) − ((𝐴 · 𝐸) + (𝐶 · 𝐷))) + (𝐴 · 𝐷)))
5333, 34, 523eqtrd 2784 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((𝐸𝐷) · (𝐶𝐴)) = (((𝐶 · 𝐸) − ((𝐴 · 𝐸) + (𝐶 · 𝐷))) + (𝐴 · 𝐷)))
5428, 53eqeq12d 2756 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (((𝐵𝐴) · (𝐹𝐷)) = ((𝐸𝐷) · (𝐶𝐴)) ↔ (((𝐵 · 𝐹) − ((𝐴 · 𝐹) + (𝐵 · 𝐷))) + (𝐴 · 𝐷)) = (((𝐶 · 𝐸) − ((𝐴 · 𝐸) + (𝐶 · 𝐷))) + (𝐴 · 𝐷))))
5516, 20addcld 11309 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((𝐴 · 𝐹) + (𝐵 · 𝐷)) ∈ ℂ)
5613, 55subcld 11647 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((𝐵 · 𝐹) − ((𝐴 · 𝐹) + (𝐵 · 𝐷))) ∈ ℂ)
5743, 46addcld 11309 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((𝐴 · 𝐸) + (𝐶 · 𝐷)) ∈ ℂ)
5841, 57subcld 11647 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((𝐶 · 𝐸) − ((𝐴 · 𝐸) + (𝐶 · 𝐷))) ∈ ℂ)
5956, 58, 22addcan2d 11494 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((((𝐵 · 𝐹) − ((𝐴 · 𝐹) + (𝐵 · 𝐷))) + (𝐴 · 𝐷)) = (((𝐶 · 𝐸) − ((𝐴 · 𝐸) + (𝐶 · 𝐷))) + (𝐴 · 𝐷)) ↔ ((𝐵 · 𝐹) − ((𝐴 · 𝐹) + (𝐵 · 𝐷))) = ((𝐶 · 𝐸) − ((𝐴 · 𝐸) + (𝐶 · 𝐷)))))
6054, 59bitrd 279 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (((𝐵𝐴) · (𝐹𝐷)) = ((𝐸𝐷) · (𝐶𝐴)) ↔ ((𝐵 · 𝐹) − ((𝐴 · 𝐹) + (𝐵 · 𝐷))) = ((𝐶 · 𝐸) − ((𝐴 · 𝐸) + (𝐶 · 𝐷)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  (class class class)co 7448  cc 11182   + caddc 11187   · cmul 11189  cmin 11520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-ltxr 11329  df-sub 11522
This theorem is referenced by:  colinearalglem2  28940
  Copyright terms: Public domain W3C validator