MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colinearalglem1 Structured version   Visualization version   GIF version

Theorem colinearalglem1 28833
Description: Lemma for colinearalg 28837. Expand out a multiplication. (Contributed by Scott Fenton, 24-Jun-2013.)
Assertion
Ref Expression
colinearalglem1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (((𝐵𝐴) · (𝐹𝐷)) = ((𝐸𝐷) · (𝐶𝐴)) ↔ ((𝐵 · 𝐹) − ((𝐴 · 𝐹) + (𝐵 · 𝐷))) = ((𝐶 · 𝐸) − ((𝐴 · 𝐸) + (𝐶 · 𝐷)))))

Proof of Theorem colinearalglem1
StepHypRef Expression
1 simpl2 1193 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → 𝐵 ∈ ℂ)
2 simpl1 1192 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → 𝐴 ∈ ℂ)
31, 2subcld 11533 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (𝐵𝐴) ∈ ℂ)
4 simpr3 1197 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → 𝐹 ∈ ℂ)
5 simpr1 1195 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → 𝐷 ∈ ℂ)
63, 4, 5subdid 11634 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((𝐵𝐴) · (𝐹𝐷)) = (((𝐵𝐴) · 𝐹) − ((𝐵𝐴) · 𝐷)))
71, 2, 4subdird 11635 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((𝐵𝐴) · 𝐹) = ((𝐵 · 𝐹) − (𝐴 · 𝐹)))
81, 2, 5subdird 11635 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((𝐵𝐴) · 𝐷) = ((𝐵 · 𝐷) − (𝐴 · 𝐷)))
97, 8oveq12d 7405 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (((𝐵𝐴) · 𝐹) − ((𝐵𝐴) · 𝐷)) = (((𝐵 · 𝐹) − (𝐴 · 𝐹)) − ((𝐵 · 𝐷) − (𝐴 · 𝐷))))
10 simp2 1137 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐵 ∈ ℂ)
11 simp3 1138 . . . . . . . 8 ((𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ) → 𝐹 ∈ ℂ)
12 mulcl 11152 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝐹 ∈ ℂ) → (𝐵 · 𝐹) ∈ ℂ)
1310, 11, 12syl2an 596 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (𝐵 · 𝐹) ∈ ℂ)
14 simp1 1136 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐴 ∈ ℂ)
15 mulcl 11152 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐹 ∈ ℂ) → (𝐴 · 𝐹) ∈ ℂ)
1614, 11, 15syl2an 596 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (𝐴 · 𝐹) ∈ ℂ)
1713, 16subcld 11533 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((𝐵 · 𝐹) − (𝐴 · 𝐹)) ∈ ℂ)
18 simp1 1136 . . . . . . 7 ((𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ) → 𝐷 ∈ ℂ)
19 mulcl 11152 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐵 · 𝐷) ∈ ℂ)
2010, 18, 19syl2an 596 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (𝐵 · 𝐷) ∈ ℂ)
21 mulcl 11152 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐴 · 𝐷) ∈ ℂ)
2214, 18, 21syl2an 596 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (𝐴 · 𝐷) ∈ ℂ)
2317, 20, 22subsub3d 11563 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (((𝐵 · 𝐹) − (𝐴 · 𝐹)) − ((𝐵 · 𝐷) − (𝐴 · 𝐷))) = ((((𝐵 · 𝐹) − (𝐴 · 𝐹)) + (𝐴 · 𝐷)) − (𝐵 · 𝐷)))
2417, 22, 20addsubd 11554 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((((𝐵 · 𝐹) − (𝐴 · 𝐹)) + (𝐴 · 𝐷)) − (𝐵 · 𝐷)) = ((((𝐵 · 𝐹) − (𝐴 · 𝐹)) − (𝐵 · 𝐷)) + (𝐴 · 𝐷)))
259, 23, 243eqtrrd 2769 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((((𝐵 · 𝐹) − (𝐴 · 𝐹)) − (𝐵 · 𝐷)) + (𝐴 · 𝐷)) = (((𝐵𝐴) · 𝐹) − ((𝐵𝐴) · 𝐷)))
2613, 16, 20subsub4d 11564 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (((𝐵 · 𝐹) − (𝐴 · 𝐹)) − (𝐵 · 𝐷)) = ((𝐵 · 𝐹) − ((𝐴 · 𝐹) + (𝐵 · 𝐷))))
2726oveq1d 7402 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((((𝐵 · 𝐹) − (𝐴 · 𝐹)) − (𝐵 · 𝐷)) + (𝐴 · 𝐷)) = (((𝐵 · 𝐹) − ((𝐴 · 𝐹) + (𝐵 · 𝐷))) + (𝐴 · 𝐷)))
286, 25, 273eqtr2d 2770 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((𝐵𝐴) · (𝐹𝐷)) = (((𝐵 · 𝐹) − ((𝐴 · 𝐹) + (𝐵 · 𝐷))) + (𝐴 · 𝐷)))
29 simpr2 1196 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → 𝐸 ∈ ℂ)
3029, 5subcld 11533 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (𝐸𝐷) ∈ ℂ)
31 simpl3 1194 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → 𝐶 ∈ ℂ)
3231, 2subcld 11533 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (𝐶𝐴) ∈ ℂ)
3330, 32mulcomd 11195 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((𝐸𝐷) · (𝐶𝐴)) = ((𝐶𝐴) · (𝐸𝐷)))
3432, 29, 5subdid 11634 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((𝐶𝐴) · (𝐸𝐷)) = (((𝐶𝐴) · 𝐸) − ((𝐶𝐴) · 𝐷)))
3531, 2, 29subdird 11635 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((𝐶𝐴) · 𝐸) = ((𝐶 · 𝐸) − (𝐴 · 𝐸)))
3631, 2, 5subdird 11635 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((𝐶𝐴) · 𝐷) = ((𝐶 · 𝐷) − (𝐴 · 𝐷)))
3735, 36oveq12d 7405 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (((𝐶𝐴) · 𝐸) − ((𝐶𝐴) · 𝐷)) = (((𝐶 · 𝐸) − (𝐴 · 𝐸)) − ((𝐶 · 𝐷) − (𝐴 · 𝐷))))
38 simp3 1138 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐶 ∈ ℂ)
39 simp2 1137 . . . . . . . . 9 ((𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ) → 𝐸 ∈ ℂ)
40 mulcl 11152 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ 𝐸 ∈ ℂ) → (𝐶 · 𝐸) ∈ ℂ)
4138, 39, 40syl2an 596 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (𝐶 · 𝐸) ∈ ℂ)
42 mulcl 11152 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐸 ∈ ℂ) → (𝐴 · 𝐸) ∈ ℂ)
4314, 39, 42syl2an 596 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (𝐴 · 𝐸) ∈ ℂ)
4441, 43subcld 11533 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((𝐶 · 𝐸) − (𝐴 · 𝐸)) ∈ ℂ)
45 mulcl 11152 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 · 𝐷) ∈ ℂ)
4638, 18, 45syl2an 596 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (𝐶 · 𝐷) ∈ ℂ)
4744, 46, 22subsub3d 11563 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (((𝐶 · 𝐸) − (𝐴 · 𝐸)) − ((𝐶 · 𝐷) − (𝐴 · 𝐷))) = ((((𝐶 · 𝐸) − (𝐴 · 𝐸)) + (𝐴 · 𝐷)) − (𝐶 · 𝐷)))
4844, 22, 46addsubd 11554 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((((𝐶 · 𝐸) − (𝐴 · 𝐸)) + (𝐴 · 𝐷)) − (𝐶 · 𝐷)) = ((((𝐶 · 𝐸) − (𝐴 · 𝐸)) − (𝐶 · 𝐷)) + (𝐴 · 𝐷)))
4937, 47, 483eqtrrd 2769 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((((𝐶 · 𝐸) − (𝐴 · 𝐸)) − (𝐶 · 𝐷)) + (𝐴 · 𝐷)) = (((𝐶𝐴) · 𝐸) − ((𝐶𝐴) · 𝐷)))
5041, 43, 46subsub4d 11564 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (((𝐶 · 𝐸) − (𝐴 · 𝐸)) − (𝐶 · 𝐷)) = ((𝐶 · 𝐸) − ((𝐴 · 𝐸) + (𝐶 · 𝐷))))
5150oveq1d 7402 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((((𝐶 · 𝐸) − (𝐴 · 𝐸)) − (𝐶 · 𝐷)) + (𝐴 · 𝐷)) = (((𝐶 · 𝐸) − ((𝐴 · 𝐸) + (𝐶 · 𝐷))) + (𝐴 · 𝐷)))
5249, 51eqtr3d 2766 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (((𝐶𝐴) · 𝐸) − ((𝐶𝐴) · 𝐷)) = (((𝐶 · 𝐸) − ((𝐴 · 𝐸) + (𝐶 · 𝐷))) + (𝐴 · 𝐷)))
5333, 34, 523eqtrd 2768 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((𝐸𝐷) · (𝐶𝐴)) = (((𝐶 · 𝐸) − ((𝐴 · 𝐸) + (𝐶 · 𝐷))) + (𝐴 · 𝐷)))
5428, 53eqeq12d 2745 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (((𝐵𝐴) · (𝐹𝐷)) = ((𝐸𝐷) · (𝐶𝐴)) ↔ (((𝐵 · 𝐹) − ((𝐴 · 𝐹) + (𝐵 · 𝐷))) + (𝐴 · 𝐷)) = (((𝐶 · 𝐸) − ((𝐴 · 𝐸) + (𝐶 · 𝐷))) + (𝐴 · 𝐷))))
5516, 20addcld 11193 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((𝐴 · 𝐹) + (𝐵 · 𝐷)) ∈ ℂ)
5613, 55subcld 11533 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((𝐵 · 𝐹) − ((𝐴 · 𝐹) + (𝐵 · 𝐷))) ∈ ℂ)
5743, 46addcld 11193 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((𝐴 · 𝐸) + (𝐶 · 𝐷)) ∈ ℂ)
5841, 57subcld 11533 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((𝐶 · 𝐸) − ((𝐴 · 𝐸) + (𝐶 · 𝐷))) ∈ ℂ)
5956, 58, 22addcan2d 11378 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((((𝐵 · 𝐹) − ((𝐴 · 𝐹) + (𝐵 · 𝐷))) + (𝐴 · 𝐷)) = (((𝐶 · 𝐸) − ((𝐴 · 𝐸) + (𝐶 · 𝐷))) + (𝐴 · 𝐷)) ↔ ((𝐵 · 𝐹) − ((𝐴 · 𝐹) + (𝐵 · 𝐷))) = ((𝐶 · 𝐸) − ((𝐴 · 𝐸) + (𝐶 · 𝐷)))))
6054, 59bitrd 279 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (((𝐵𝐴) · (𝐹𝐷)) = ((𝐸𝐷) · (𝐶𝐴)) ↔ ((𝐵 · 𝐹) − ((𝐴 · 𝐹) + (𝐵 · 𝐷))) = ((𝐶 · 𝐸) − ((𝐴 · 𝐸) + (𝐶 · 𝐷)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  (class class class)co 7387  cc 11066   + caddc 11071   · cmul 11073  cmin 11405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-ltxr 11213  df-sub 11407
This theorem is referenced by:  colinearalglem2  28834
  Copyright terms: Public domain W3C validator