MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsub3d Structured version   Visualization version   GIF version

Theorem subsub3d 11651
Description: Law for double subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
negidd.1 (𝜑𝐴 ∈ ℂ)
pncand.2 (𝜑𝐵 ∈ ℂ)
subaddd.3 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
subsub3d (𝜑 → (𝐴 − (𝐵𝐶)) = ((𝐴 + 𝐶) − 𝐵))

Proof of Theorem subsub3d
StepHypRef Expression
1 negidd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 pncand.2 . 2 (𝜑𝐵 ∈ ℂ)
3 subaddd.3 . 2 (𝜑𝐶 ∈ ℂ)
4 subsub3 11542 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − (𝐵𝐶)) = ((𝐴 + 𝐶) − 𝐵))
51, 2, 3, 4syl3anc 1368 1 (𝜑 → (𝐴 − (𝐵𝐶)) = ((𝐴 + 𝐶) − 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  (class class class)co 7424  cc 11156   + caddc 11161  cmin 11494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-po 5594  df-so 5595  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-pnf 11300  df-mnf 11301  df-ltxr 11303  df-sub 11496
This theorem is referenced by:  xp1d2m1eqxm1d2  12518  bcpasc  14338  pfxccatin12lem2  14739  spllen  14762  revccat  14774  cshwidxmod  14811  fsumparts  15810  binomlem  15833  fallfacfwd  16038  binomfallfaclem2  16042  4sqlem5  16944  4sqlem12  16958  srgbinomlem4  20212  psdmul  22160  ovollb2lem  25508  dvcvx  26044  dvfsumlem4  26055  heron  26866  selberg3lem1  27586  pntrsumo1  27594  selberg34r  27600  pntrlog2bndlem5  27610  brbtwn2  28839  colinearalglem1  28840  colinearalglem2  28841  colinearalglem4  28843  crctcshwlkn0lem6  29749  clwlkclwwlklem3  29934  fwddifnp1  35989  dnibndlem7  36187  dnibndlem8  36188  sticksstones10  41853  dvnmul  45564  stoweidlem21  45642  wallispilem5  45690  fourierdlem42  45770  fourierdlem63  45790
  Copyright terms: Public domain W3C validator