MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsub3d Structured version   Visualization version   GIF version

Theorem subsub3d 11523
Description: Law for double subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
negidd.1 (𝜑𝐴 ∈ ℂ)
pncand.2 (𝜑𝐵 ∈ ℂ)
subaddd.3 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
subsub3d (𝜑 → (𝐴 − (𝐵𝐶)) = ((𝐴 + 𝐶) − 𝐵))

Proof of Theorem subsub3d
StepHypRef Expression
1 negidd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 pncand.2 . 2 (𝜑𝐵 ∈ ℂ)
3 subaddd.3 . 2 (𝜑𝐶 ∈ ℂ)
4 subsub3 11414 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − (𝐵𝐶)) = ((𝐴 + 𝐶) − 𝐵))
51, 2, 3, 4syl3anc 1373 1 (𝜑 → (𝐴 − (𝐵𝐶)) = ((𝐴 + 𝐶) − 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  (class class class)co 7353  cc 11026   + caddc 11031  cmin 11365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-ltxr 11173  df-sub 11367
This theorem is referenced by:  xp1d2m1eqxm1d2  12396  bcpasc  14246  pfxccatin12lem2  14655  spllen  14678  revccat  14690  cshwidxmod  14727  fsumparts  15731  binomlem  15754  fallfacfwd  15961  binomfallfaclem2  15965  4sqlem5  16872  4sqlem12  16886  srgbinomlem4  20132  psdmul  22069  ovollb2lem  25405  dvcvx  25941  dvfsumlem4  25952  heron  26764  selberg3lem1  27484  pntrsumo1  27492  selberg34r  27498  pntrlog2bndlem5  27508  brbtwn2  28868  colinearalglem1  28869  colinearalglem2  28870  colinearalglem4  28872  crctcshwlkn0lem6  29778  clwlkclwwlklem3  29963  constrrtcc  33701  fwddifnp1  36138  dnibndlem7  36457  dnibndlem8  36458  sticksstones10  42128  dvnmul  45925  stoweidlem21  46003  wallispilem5  46051  fourierdlem42  46131  fourierdlem63  46151  submodlt  47335  gpgedgvtx1  48037
  Copyright terms: Public domain W3C validator