MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsub3d Structured version   Visualization version   GIF version

Theorem subsub3d 11472
Description: Law for double subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
negidd.1 (𝜑𝐴 ∈ ℂ)
pncand.2 (𝜑𝐵 ∈ ℂ)
subaddd.3 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
subsub3d (𝜑 → (𝐴 − (𝐵𝐶)) = ((𝐴 + 𝐶) − 𝐵))

Proof of Theorem subsub3d
StepHypRef Expression
1 negidd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 pncand.2 . 2 (𝜑𝐵 ∈ ℂ)
3 subaddd.3 . 2 (𝜑𝐶 ∈ ℂ)
4 subsub3 11363 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − (𝐵𝐶)) = ((𝐴 + 𝐶) − 𝐵))
51, 2, 3, 4syl3anc 1371 1 (𝜑 → (𝐴 − (𝐵𝐶)) = ((𝐴 + 𝐶) − 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  (class class class)co 7346  cc 10979   + caddc 10984  cmin 11315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5251  ax-nul 5258  ax-pow 5315  ax-pr 5379  ax-un 7659  ax-resscn 11038  ax-1cn 11039  ax-icn 11040  ax-addcl 11041  ax-addrcl 11042  ax-mulcl 11043  ax-mulrcl 11044  ax-mulcom 11045  ax-addass 11046  ax-mulass 11047  ax-distr 11048  ax-i2m1 11049  ax-1ne0 11050  ax-1rid 11051  ax-rnegex 11052  ax-rrecex 11053  ax-cnre 11054  ax-pre-lttri 11055  ax-pre-lttrn 11056  ax-pre-ltadd 11057
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3735  df-csb 3851  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4278  df-if 4482  df-pw 4557  df-sn 4582  df-pr 4584  df-op 4588  df-uni 4861  df-br 5101  df-opab 5163  df-mpt 5184  df-id 5525  df-po 5539  df-so 5540  df-xp 5633  df-rel 5634  df-cnv 5635  df-co 5636  df-dm 5637  df-rn 5638  df-res 5639  df-ima 5640  df-iota 6440  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7302  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8578  df-en 8814  df-dom 8815  df-sdom 8816  df-pnf 11121  df-mnf 11122  df-ltxr 11124  df-sub 11317
This theorem is referenced by:  xp1d2m1eqxm1d2  12337  bcpasc  14145  pfxccatin12lem2  14547  spllen  14570  revccat  14582  cshwidxmod  14619  fsumparts  15622  binomlem  15645  fallfacfwd  15850  binomfallfaclem2  15854  4sqlem5  16745  4sqlem12  16759  srgbinomlem4  19878  ovollb2lem  24762  dvcvx  25294  dvfsumlem4  25303  heron  26098  selberg3lem1  26815  pntrsumo1  26823  selberg34r  26829  pntrlog2bndlem5  26839  brbtwn2  27628  colinearalglem1  27629  colinearalglem2  27630  colinearalglem4  27632  crctcshwlkn0lem6  28534  clwlkclwwlklem3  28719  fwddifnp1  34606  dnibndlem7  34803  dnibndlem8  34804  sticksstones10  40419  dvnmul  43872  stoweidlem21  43950  wallispilem5  43998  fourierdlem42  44078  fourierdlem63  44098
  Copyright terms: Public domain W3C validator