| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addsubd | Structured version Visualization version GIF version | ||
| Description: Law for subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| subaddd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| addsubd | ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | subaddd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | addsub 11363 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵)) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 (class class class)co 7341 ℂcc 10996 + caddc 11001 − cmin 11336 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11140 df-mnf 11141 df-ltxr 11143 df-sub 11338 |
| This theorem is referenced by: addsubsub23 11517 lesub2 11604 fzoshftral 13679 modadd1 13804 discr 14139 bcp1n 14215 bcpasc 14220 revccat 14665 crre 15013 isercoll2 15568 binomlem 15728 climcndslem1 15748 binomfallfaclem2 15939 pythagtriplem14 16732 vdwlem6 16890 gsumsgrpccat 18740 srgbinomlem3 20139 itgcnlem 25711 dvcvx 25945 dvfsumlem1 25952 dvfsumlem2 25953 dvfsumlem2OLD 25954 plymullem1 26139 aaliou3lem2 26271 abelthlem2 26362 tangtx 26434 loglesqrt 26691 dcubic1 26775 quart1lem 26785 quartlem1 26787 basellem3 27013 basellem5 27015 chtub 27143 logfaclbnd 27153 bcp1ctr 27210 lgsquad2lem1 27315 2lgslem3b 27328 selberglem1 27476 selberg3 27490 selbergr 27499 selberg3r 27500 pntlemf 27536 pntlemo 27538 brbtwn2 28876 colinearalglem1 28877 colinearalglem2 28878 crctcsh 29795 clwwlkccatlem 29959 clwwlkel 30016 clwwlkwwlksb 30024 clwwlknonex2lem1 30077 ltesubnnd 32795 constrrtlc1 33735 constrrtcclem 33737 ballotlemfp1 34495 swrdwlk 35139 subfacp1lem6 35197 fwddifnp1 36178 poimirlem25 37664 poimirlem26 37665 2np3bcnp1 42156 sticksstones12a 42169 jm2.24nn 42971 jm2.18 43000 jm2.25 43011 dvnmul 45960 fourierdlem4 46128 fourierdlem26 46150 fourierdlem42 46166 vonicclem1 46700 cnambpcma 47304 cnapbmcpd 47305 fmtnorec4 47559 ltsubaddb 48525 ltsubadd2b 48527 2itscplem3 48791 |
| Copyright terms: Public domain | W3C validator |