| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addsubd | Structured version Visualization version GIF version | ||
| Description: Law for subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| subaddd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| addsubd | ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | subaddd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | addsub 11381 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵)) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 (class class class)co 7355 ℂcc 11014 + caddc 11019 − cmin 11354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-pnf 11158 df-mnf 11159 df-ltxr 11161 df-sub 11356 |
| This theorem is referenced by: addsubsub23 11535 lesub2 11622 fzoshftral 13697 modadd1 13822 discr 14157 bcp1n 14233 bcpasc 14238 revccat 14683 crre 15031 isercoll2 15586 binomlem 15746 climcndslem1 15766 binomfallfaclem2 15957 pythagtriplem14 16750 vdwlem6 16908 gsumsgrpccat 18758 srgbinomlem3 20156 itgcnlem 25728 dvcvx 25962 dvfsumlem1 25969 dvfsumlem2 25970 dvfsumlem2OLD 25971 plymullem1 26156 aaliou3lem2 26288 abelthlem2 26379 tangtx 26451 loglesqrt 26708 dcubic1 26792 quart1lem 26802 quartlem1 26804 basellem3 27030 basellem5 27032 chtub 27160 logfaclbnd 27170 bcp1ctr 27227 lgsquad2lem1 27332 2lgslem3b 27345 selberglem1 27493 selberg3 27507 selbergr 27516 selberg3r 27517 pntlemf 27553 pntlemo 27555 brbtwn2 28894 colinearalglem1 28895 colinearalglem2 28896 crctcsh 29813 clwwlkccatlem 29980 clwwlkel 30037 clwwlkwwlksb 30045 clwwlknonex2lem1 30098 ltesubnnd 32816 constrrtlc1 33756 constrrtcclem 33758 ballotlemfp1 34516 swrdwlk 35182 subfacp1lem6 35240 fwddifnp1 36220 poimirlem25 37695 poimirlem26 37696 2np3bcnp1 42247 sticksstones12a 42260 jm2.24nn 43066 jm2.18 43095 jm2.25 43106 dvnmul 46055 fourierdlem4 46223 fourierdlem26 46245 fourierdlem42 46261 vonicclem1 46795 cnambpcma 47408 cnapbmcpd 47409 fmtnorec4 47663 ltsubaddb 48629 ltsubadd2b 48631 2itscplem3 48895 |
| Copyright terms: Public domain | W3C validator |