| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addsubd | Structured version Visualization version GIF version | ||
| Description: Law for subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| subaddd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| addsubd | ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | subaddd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | addsub 11501 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵)) | |
| 5 | 1, 2, 3, 4 | syl3anc 1372 | 1 ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 (class class class)co 7413 ℂcc 11135 + caddc 11140 − cmin 11474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-po 5572 df-so 5573 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-ltxr 11282 df-sub 11476 |
| This theorem is referenced by: lesub2 11740 fzoshftral 13805 modadd1 13930 discr 14261 bcp1n 14337 bcpasc 14342 revccat 14786 crre 15135 isercoll2 15687 binomlem 15847 climcndslem1 15867 binomfallfaclem2 16058 pythagtriplem14 16848 vdwlem6 17006 gsumsgrpccat 18822 srgbinomlem3 20193 itgcnlem 25761 dvcvx 25995 dvfsumlem1 26002 dvfsumlem2 26003 dvfsumlem2OLD 26004 plymullem1 26189 aaliou3lem2 26321 abelthlem2 26412 tangtx 26483 loglesqrt 26740 dcubic1 26824 quart1lem 26834 quartlem1 26836 basellem3 27062 basellem5 27064 chtub 27192 logfaclbnd 27202 bcp1ctr 27259 lgsquad2lem1 27364 2lgslem3b 27377 selberglem1 27525 selberg3 27539 selbergr 27548 selberg3r 27549 pntlemf 27585 pntlemo 27587 brbtwn2 28850 colinearalglem1 28851 colinearalglem2 28852 crctcsh 29772 clwwlkccatlem 29936 clwwlkel 29993 clwwlkwwlksb 30001 clwwlknonex2lem1 30054 ltesubnnd 32764 constrrtlc1 33712 constrrtcclem 33714 ballotlemfp1 34453 swrdwlk 35091 subfacp1lem6 35149 fwddifnp1 36125 poimirlem25 37611 poimirlem26 37612 2np3bcnp1 42104 sticksstones12a 42117 jm2.24nn 42934 jm2.18 42963 jm2.25 42974 dvnmul 45915 fourierdlem4 46083 fourierdlem26 46105 fourierdlem42 46121 vonicclem1 46655 cnambpcma 47264 cnapbmcpd 47265 fmtnorec4 47494 ltsubaddb 48389 ltsubadd2b 48391 2itscplem3 48659 |
| Copyright terms: Public domain | W3C validator |