![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addsubd | Structured version Visualization version GIF version |
Description: Law for subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
subaddd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
addsubd | ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | subaddd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | addsub 11517 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵)) | |
5 | 1, 2, 3, 4 | syl3anc 1370 | 1 ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 (class class class)co 7431 ℂcc 11151 + caddc 11156 − cmin 11490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-ltxr 11298 df-sub 11492 |
This theorem is referenced by: lesub2 11756 fzoshftral 13820 modadd1 13945 discr 14276 bcp1n 14352 bcpasc 14357 revccat 14801 crre 15150 isercoll2 15702 binomlem 15862 climcndslem1 15882 binomfallfaclem2 16073 pythagtriplem14 16862 vdwlem6 17020 gsumsgrpccat 18866 srgbinomlem3 20246 itgcnlem 25840 dvcvx 26074 dvfsumlem1 26081 dvfsumlem2 26082 dvfsumlem2OLD 26083 plymullem1 26268 aaliou3lem2 26400 abelthlem2 26491 tangtx 26562 loglesqrt 26819 dcubic1 26903 quart1lem 26913 quartlem1 26915 basellem3 27141 basellem5 27143 chtub 27271 logfaclbnd 27281 bcp1ctr 27338 lgsquad2lem1 27443 2lgslem3b 27456 selberglem1 27604 selberg3 27618 selbergr 27627 selberg3r 27628 pntlemf 27664 pntlemo 27666 brbtwn2 28935 colinearalglem1 28936 colinearalglem2 28937 crctcsh 29854 clwwlkccatlem 30018 clwwlkel 30075 clwwlkwwlksb 30083 clwwlknonex2lem1 30136 ltesubnnd 32829 constrrtlc1 33738 constrrtcclem 33740 ballotlemfp1 34473 swrdwlk 35111 subfacp1lem6 35170 fwddifnp1 36147 poimirlem25 37632 poimirlem26 37633 2np3bcnp1 42126 sticksstones12a 42139 jm2.24nn 42948 jm2.18 42977 jm2.25 42988 dvnmul 45899 fourierdlem4 46067 fourierdlem26 46089 fourierdlem42 46105 vonicclem1 46639 cnambpcma 47244 cnapbmcpd 47245 fmtnorec4 47474 ltsubaddb 48360 ltsubadd2b 48362 2itscplem3 48630 |
Copyright terms: Public domain | W3C validator |