| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addsubd | Structured version Visualization version GIF version | ||
| Description: Law for subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| subaddd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| addsubd | ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | subaddd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | addsub 11432 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵)) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 + caddc 11071 − cmin 11405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-sub 11407 |
| This theorem is referenced by: addsubsub23 11586 lesub2 11673 fzoshftral 13745 modadd1 13870 discr 14205 bcp1n 14281 bcpasc 14286 revccat 14731 crre 15080 isercoll2 15635 binomlem 15795 climcndslem1 15815 binomfallfaclem2 16006 pythagtriplem14 16799 vdwlem6 16957 gsumsgrpccat 18767 srgbinomlem3 20137 itgcnlem 25691 dvcvx 25925 dvfsumlem1 25932 dvfsumlem2 25933 dvfsumlem2OLD 25934 plymullem1 26119 aaliou3lem2 26251 abelthlem2 26342 tangtx 26414 loglesqrt 26671 dcubic1 26755 quart1lem 26765 quartlem1 26767 basellem3 26993 basellem5 26995 chtub 27123 logfaclbnd 27133 bcp1ctr 27190 lgsquad2lem1 27295 2lgslem3b 27308 selberglem1 27456 selberg3 27470 selbergr 27479 selberg3r 27480 pntlemf 27516 pntlemo 27518 brbtwn2 28832 colinearalglem1 28833 colinearalglem2 28834 crctcsh 29754 clwwlkccatlem 29918 clwwlkel 29975 clwwlkwwlksb 29983 clwwlknonex2lem1 30036 ltesubnnd 32747 constrrtlc1 33722 constrrtcclem 33724 ballotlemfp1 34483 swrdwlk 35114 subfacp1lem6 35172 fwddifnp1 36153 poimirlem25 37639 poimirlem26 37640 2np3bcnp1 42132 sticksstones12a 42145 jm2.24nn 42948 jm2.18 42977 jm2.25 42988 dvnmul 45941 fourierdlem4 46109 fourierdlem26 46131 fourierdlem42 46147 vonicclem1 46681 cnambpcma 47295 cnapbmcpd 47296 fmtnorec4 47550 ltsubaddb 48503 ltsubadd2b 48505 2itscplem3 48769 |
| Copyright terms: Public domain | W3C validator |