| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addsubd | Structured version Visualization version GIF version | ||
| Description: Law for subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| subaddd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| addsubd | ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | subaddd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | addsub 11392 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵)) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7353 ℂcc 11026 + caddc 11031 − cmin 11365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-ltxr 11173 df-sub 11367 |
| This theorem is referenced by: addsubsub23 11546 lesub2 11633 fzoshftral 13705 modadd1 13830 discr 14165 bcp1n 14241 bcpasc 14246 revccat 14690 crre 15039 isercoll2 15594 binomlem 15754 climcndslem1 15774 binomfallfaclem2 15965 pythagtriplem14 16758 vdwlem6 16916 gsumsgrpccat 18732 srgbinomlem3 20131 itgcnlem 25707 dvcvx 25941 dvfsumlem1 25948 dvfsumlem2 25949 dvfsumlem2OLD 25950 plymullem1 26135 aaliou3lem2 26267 abelthlem2 26358 tangtx 26430 loglesqrt 26687 dcubic1 26771 quart1lem 26781 quartlem1 26783 basellem3 27009 basellem5 27011 chtub 27139 logfaclbnd 27149 bcp1ctr 27206 lgsquad2lem1 27311 2lgslem3b 27324 selberglem1 27472 selberg3 27486 selbergr 27495 selberg3r 27496 pntlemf 27532 pntlemo 27534 brbtwn2 28868 colinearalglem1 28869 colinearalglem2 28870 crctcsh 29787 clwwlkccatlem 29951 clwwlkel 30008 clwwlkwwlksb 30016 clwwlknonex2lem1 30069 ltesubnnd 32780 constrrtlc1 33698 constrrtcclem 33700 ballotlemfp1 34459 swrdwlk 35099 subfacp1lem6 35157 fwddifnp1 36138 poimirlem25 37624 poimirlem26 37625 2np3bcnp1 42117 sticksstones12a 42130 jm2.24nn 42932 jm2.18 42961 jm2.25 42972 dvnmul 45925 fourierdlem4 46093 fourierdlem26 46115 fourierdlem42 46131 vonicclem1 46665 cnambpcma 47279 cnapbmcpd 47280 fmtnorec4 47534 ltsubaddb 48487 ltsubadd2b 48489 2itscplem3 48753 |
| Copyright terms: Public domain | W3C validator |