Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > addsubd | Structured version Visualization version GIF version |
Description: Law for subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
subaddd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
addsubd | ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | subaddd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | addsub 11232 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵)) | |
5 | 1, 2, 3, 4 | syl3anc 1370 | 1 ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 (class class class)co 7275 ℂcc 10869 + caddc 10874 − cmin 11205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-ltxr 11014 df-sub 11207 |
This theorem is referenced by: lesub2 11470 fzoshftral 13504 modadd1 13628 discr 13955 bcp1n 14030 bcpasc 14035 revccat 14479 crre 14825 isercoll2 15380 binomlem 15541 climcndslem1 15561 binomfallfaclem2 15750 pythagtriplem14 16529 vdwlem6 16687 gsumsgrpccat 18478 gsumccatOLD 18479 srgbinomlem3 19778 itgcnlem 24954 dvcvx 25184 dvfsumlem1 25190 dvfsumlem2 25191 plymullem1 25375 aaliou3lem2 25503 abelthlem2 25591 tangtx 25662 loglesqrt 25911 dcubic1 25995 quart1lem 26005 quartlem1 26007 basellem3 26232 basellem5 26234 chtub 26360 logfaclbnd 26370 bcp1ctr 26427 lgsquad2lem1 26532 2lgslem3b 26545 selberglem1 26693 selberg3 26707 selbergr 26716 selberg3r 26717 pntlemf 26753 pntlemo 26755 brbtwn2 27273 colinearalglem1 27274 colinearalglem2 27275 crctcsh 28189 clwwlkccatlem 28353 clwwlkel 28410 clwwlkwwlksb 28418 clwwlknonex2lem1 28471 ltesubnnd 31136 ballotlemfp1 32458 swrdwlk 33088 subfacp1lem6 33147 fwddifnp1 34467 poimirlem25 35802 poimirlem26 35803 2np3bcnp1 40100 sticksstones12a 40113 jm2.24nn 40781 jm2.18 40810 jm2.25 40821 dvnmul 43484 fourierdlem4 43652 fourierdlem26 43674 fourierdlem42 43690 vonicclem1 44221 cnambpcma 44786 cnapbmcpd 44787 fmtnorec4 45001 ltsubaddb 45855 ltsubadd2b 45857 2itscplem3 46126 |
Copyright terms: Public domain | W3C validator |