![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addsubd | Structured version Visualization version GIF version |
Description: Law for subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
subaddd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
addsubd | ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | subaddd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | addsub 11478 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵)) | |
5 | 1, 2, 3, 4 | syl3anc 1370 | 1 ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 (class class class)co 7412 ℂcc 11114 + caddc 11119 − cmin 11451 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-ltxr 11260 df-sub 11453 |
This theorem is referenced by: lesub2 11716 fzoshftral 13756 modadd1 13880 discr 14210 bcp1n 14283 bcpasc 14288 revccat 14723 crre 15068 isercoll2 15622 binomlem 15782 climcndslem1 15802 binomfallfaclem2 15991 pythagtriplem14 16768 vdwlem6 16926 gsumsgrpccat 18763 srgbinomlem3 20129 itgcnlem 25639 dvcvx 25873 dvfsumlem1 25880 dvfsumlem2 25881 dvfsumlem2OLD 25882 plymullem1 26066 aaliou3lem2 26195 abelthlem2 26284 tangtx 26355 loglesqrt 26607 dcubic1 26691 quart1lem 26701 quartlem1 26703 basellem3 26928 basellem5 26930 chtub 27058 logfaclbnd 27068 bcp1ctr 27125 lgsquad2lem1 27230 2lgslem3b 27243 selberglem1 27391 selberg3 27405 selbergr 27414 selberg3r 27415 pntlemf 27451 pntlemo 27453 brbtwn2 28596 colinearalglem1 28597 colinearalglem2 28598 crctcsh 29511 clwwlkccatlem 29675 clwwlkel 29732 clwwlkwwlksb 29740 clwwlknonex2lem1 29793 ltesubnnd 32461 ballotlemfp1 33954 swrdwlk 34581 subfacp1lem6 34640 fwddifnp1 35607 poimirlem25 36977 poimirlem26 36978 2np3bcnp1 41427 sticksstones12a 41440 jm2.24nn 42161 jm2.18 42190 jm2.25 42201 dvnmul 45118 fourierdlem4 45286 fourierdlem26 45308 fourierdlem42 45324 vonicclem1 45858 cnambpcma 46461 cnapbmcpd 46462 fmtnorec4 46676 ltsubaddb 47357 ltsubadd2b 47359 2itscplem3 47628 |
Copyright terms: Public domain | W3C validator |