| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addsubd | Structured version Visualization version GIF version | ||
| Description: Law for subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| subaddd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| addsubd | ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | subaddd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | addsub 11439 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵)) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7390 ℂcc 11073 + caddc 11078 − cmin 11412 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-sub 11414 |
| This theorem is referenced by: addsubsub23 11593 lesub2 11680 fzoshftral 13752 modadd1 13877 discr 14212 bcp1n 14288 bcpasc 14293 revccat 14738 crre 15087 isercoll2 15642 binomlem 15802 climcndslem1 15822 binomfallfaclem2 16013 pythagtriplem14 16806 vdwlem6 16964 gsumsgrpccat 18774 srgbinomlem3 20144 itgcnlem 25698 dvcvx 25932 dvfsumlem1 25939 dvfsumlem2 25940 dvfsumlem2OLD 25941 plymullem1 26126 aaliou3lem2 26258 abelthlem2 26349 tangtx 26421 loglesqrt 26678 dcubic1 26762 quart1lem 26772 quartlem1 26774 basellem3 27000 basellem5 27002 chtub 27130 logfaclbnd 27140 bcp1ctr 27197 lgsquad2lem1 27302 2lgslem3b 27315 selberglem1 27463 selberg3 27477 selbergr 27486 selberg3r 27487 pntlemf 27523 pntlemo 27525 brbtwn2 28839 colinearalglem1 28840 colinearalglem2 28841 crctcsh 29761 clwwlkccatlem 29925 clwwlkel 29982 clwwlkwwlksb 29990 clwwlknonex2lem1 30043 ltesubnnd 32754 constrrtlc1 33729 constrrtcclem 33731 ballotlemfp1 34490 swrdwlk 35121 subfacp1lem6 35179 fwddifnp1 36160 poimirlem25 37646 poimirlem26 37647 2np3bcnp1 42139 sticksstones12a 42152 jm2.24nn 42955 jm2.18 42984 jm2.25 42995 dvnmul 45948 fourierdlem4 46116 fourierdlem26 46138 fourierdlem42 46154 vonicclem1 46688 cnambpcma 47299 cnapbmcpd 47300 fmtnorec4 47554 ltsubaddb 48507 ltsubadd2b 48509 2itscplem3 48773 |
| Copyright terms: Public domain | W3C validator |