| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addsubd | Structured version Visualization version GIF version | ||
| Description: Law for subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| subaddd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| addsubd | ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | subaddd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | addsub 11498 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵)) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7410 ℂcc 11132 + caddc 11137 − cmin 11471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-ltxr 11279 df-sub 11473 |
| This theorem is referenced by: lesub2 11737 fzoshftral 13805 modadd1 13930 discr 14263 bcp1n 14339 bcpasc 14344 revccat 14789 crre 15138 isercoll2 15690 binomlem 15850 climcndslem1 15870 binomfallfaclem2 16061 pythagtriplem14 16853 vdwlem6 17011 gsumsgrpccat 18823 srgbinomlem3 20193 itgcnlem 25748 dvcvx 25982 dvfsumlem1 25989 dvfsumlem2 25990 dvfsumlem2OLD 25991 plymullem1 26176 aaliou3lem2 26308 abelthlem2 26399 tangtx 26471 loglesqrt 26728 dcubic1 26812 quart1lem 26822 quartlem1 26824 basellem3 27050 basellem5 27052 chtub 27180 logfaclbnd 27190 bcp1ctr 27247 lgsquad2lem1 27352 2lgslem3b 27365 selberglem1 27513 selberg3 27527 selbergr 27536 selberg3r 27537 pntlemf 27573 pntlemo 27575 brbtwn2 28889 colinearalglem1 28890 colinearalglem2 28891 crctcsh 29811 clwwlkccatlem 29975 clwwlkel 30032 clwwlkwwlksb 30040 clwwlknonex2lem1 30093 ltesubnnd 32806 constrrtlc1 33771 constrrtcclem 33773 ballotlemfp1 34529 swrdwlk 35154 subfacp1lem6 35212 fwddifnp1 36188 poimirlem25 37674 poimirlem26 37675 2np3bcnp1 42162 sticksstones12a 42175 jm2.24nn 42958 jm2.18 42987 jm2.25 42998 dvnmul 45952 fourierdlem4 46120 fourierdlem26 46142 fourierdlem42 46158 vonicclem1 46692 cnambpcma 47303 cnapbmcpd 47304 fmtnorec4 47543 ltsubaddb 48470 ltsubadd2b 48472 2itscplem3 48740 |
| Copyright terms: Public domain | W3C validator |