Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > addsubd | Structured version Visualization version GIF version |
Description: Law for subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
subaddd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
addsubd | ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | subaddd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | addsub 11162 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵)) | |
5 | 1, 2, 3, 4 | syl3anc 1369 | 1 ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 + caddc 10805 − cmin 11135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-sub 11137 |
This theorem is referenced by: lesub2 11400 fzoshftral 13432 modadd1 13556 discr 13883 bcp1n 13958 bcpasc 13963 revccat 14407 crre 14753 isercoll2 15308 binomlem 15469 climcndslem1 15489 binomfallfaclem2 15678 pythagtriplem14 16457 vdwlem6 16615 gsumsgrpccat 18393 gsumccatOLD 18394 srgbinomlem3 19693 itgcnlem 24859 dvcvx 25089 dvfsumlem1 25095 dvfsumlem2 25096 plymullem1 25280 aaliou3lem2 25408 abelthlem2 25496 tangtx 25567 loglesqrt 25816 dcubic1 25900 quart1lem 25910 quartlem1 25912 basellem3 26137 basellem5 26139 chtub 26265 logfaclbnd 26275 bcp1ctr 26332 lgsquad2lem1 26437 2lgslem3b 26450 selberglem1 26598 selberg3 26612 selbergr 26621 selberg3r 26622 pntlemf 26658 pntlemo 26660 brbtwn2 27176 colinearalglem1 27177 colinearalglem2 27178 crctcsh 28090 clwwlkccatlem 28254 clwwlkel 28311 clwwlkwwlksb 28319 clwwlknonex2lem1 28372 ltesubnnd 31038 ballotlemfp1 32358 swrdwlk 32988 subfacp1lem6 33047 fwddifnp1 34394 poimirlem25 35729 poimirlem26 35730 2np3bcnp1 40028 sticksstones12a 40041 jm2.24nn 40697 jm2.18 40726 jm2.25 40737 dvnmul 43374 fourierdlem4 43542 fourierdlem26 43564 fourierdlem42 43580 vonicclem1 44111 cnambpcma 44674 cnapbmcpd 44675 fmtnorec4 44889 ltsubaddb 45743 ltsubadd2b 45745 2itscplem3 46014 |
Copyright terms: Public domain | W3C validator |