![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cutpos | Structured version Visualization version GIF version |
Description: Reduce the elements of a cut for a positive number. (Contributed by Scott Fenton, 13-Mar-2025.) |
Ref | Expression |
---|---|
cutpos.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
cutpos.2 | ⊢ (𝜑 → 0s <s 𝐴) |
Ref | Expression |
---|---|
cutpos | ⊢ (𝜑 → 𝐴 = (({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) |s ( R ‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lltropt 27740 | . . 3 ⊢ ( L ‘𝐴) <<s ( R ‘𝐴) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ( L ‘𝐴) <<s ( R ‘𝐴)) |
3 | cutpos.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ No ) | |
4 | lrcut 27770 | . . . 4 ⊢ (𝐴 ∈ No → (( L ‘𝐴) |s ( R ‘𝐴)) = 𝐴) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝜑 → (( L ‘𝐴) |s ( R ‘𝐴)) = 𝐴) |
6 | 5 | eqcomd 2730 | . 2 ⊢ (𝜑 → 𝐴 = (( L ‘𝐴) |s ( R ‘𝐴))) |
7 | cutpos.2 | . . 3 ⊢ (𝜑 → 0s <s 𝐴) | |
8 | 3, 7 | 0elleft 27777 | . 2 ⊢ (𝜑 → 0s ∈ ( L ‘𝐴)) |
9 | 2, 6, 8 | cutlt 27793 | 1 ⊢ (𝜑 → 𝐴 = (({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) |s ( R ‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 {crab 3424 ∪ cun 3939 {csn 4621 class class class wbr 5139 ‘cfv 6534 (class class class)co 7402 No csur 27514 <s cslt 27515 <<s csslt 27654 |s cscut 27656 0s c0s 27696 L cleft 27713 R cright 27714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-tp 4626 df-op 4628 df-uni 4901 df-int 4942 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-1o 8462 df-2o 8463 df-no 27517 df-slt 27518 df-bday 27519 df-sle 27619 df-sslt 27655 df-scut 27657 df-0s 27698 df-made 27715 df-old 27716 df-left 27718 df-right 27719 |
This theorem is referenced by: precsexlem11 28056 |
Copyright terms: Public domain | W3C validator |