![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cutpos | Structured version Visualization version GIF version |
Description: Reduce the elements of a cut for a positive number. (Contributed by Scott Fenton, 13-Mar-2025.) |
Ref | Expression |
---|---|
cutpos.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
cutpos.2 | ⊢ (𝜑 → 0s <s 𝐴) |
Ref | Expression |
---|---|
cutpos | ⊢ (𝜑 → 𝐴 = (({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) |s ( R ‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lltropt 27356 | . . 3 ⊢ ( L ‘𝐴) <<s ( R ‘𝐴) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ( L ‘𝐴) <<s ( R ‘𝐴)) |
3 | cutpos.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ No ) | |
4 | lrcut 27386 | . . . 4 ⊢ (𝐴 ∈ No → (( L ‘𝐴) |s ( R ‘𝐴)) = 𝐴) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝜑 → (( L ‘𝐴) |s ( R ‘𝐴)) = 𝐴) |
6 | 5 | eqcomd 2738 | . 2 ⊢ (𝜑 → 𝐴 = (( L ‘𝐴) |s ( R ‘𝐴))) |
7 | cutpos.2 | . . 3 ⊢ (𝜑 → 0s <s 𝐴) | |
8 | 3, 7 | 0elleft 27392 | . 2 ⊢ (𝜑 → 0s ∈ ( L ‘𝐴)) |
9 | 2, 6, 8 | cutlt 27408 | 1 ⊢ (𝜑 → 𝐴 = (({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) |s ( R ‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 {crab 3432 ∪ cun 3945 {csn 4627 class class class wbr 5147 ‘cfv 6540 (class class class)co 7405 No csur 27132 <s cslt 27133 <<s csslt 27271 |s cscut 27273 0s c0s 27312 L cleft 27329 R cright 27330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-1o 8462 df-2o 8463 df-no 27135 df-slt 27136 df-bday 27137 df-sle 27237 df-sslt 27272 df-scut 27274 df-0s 27314 df-made 27331 df-old 27332 df-left 27334 df-right 27335 |
This theorem is referenced by: precsexlem11 27652 |
Copyright terms: Public domain | W3C validator |