Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihmeetlem7N Structured version   Visualization version   GIF version

Theorem dihmeetlem7N 39251
Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihmeetlem7.b 𝐵 = (Base‘𝐾)
dihmeetlem7.l = (le‘𝐾)
dihmeetlem7.j = (join‘𝐾)
dihmeetlem7.m = (meet‘𝐾)
dihmeetlem7.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
dihmeetlem7N (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑌)) → (((𝑋 𝑌) 𝑝) 𝑌) = (𝑋 𝑌))

Proof of Theorem dihmeetlem7N
StepHypRef Expression
1 simprr 769 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑌)) → ¬ 𝑝 𝑌)
2 simpl1 1189 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑌)) → 𝐾 ∈ HL)
3 hlatl 37301 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
42, 3syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑌)) → 𝐾 ∈ AtLat)
5 simprl 767 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑌)) → 𝑝𝐴)
6 simpl3 1191 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑌)) → 𝑌𝐵)
7 dihmeetlem7.b . . . . . 6 𝐵 = (Base‘𝐾)
8 dihmeetlem7.l . . . . . 6 = (le‘𝐾)
9 dihmeetlem7.m . . . . . 6 = (meet‘𝐾)
10 eqid 2738 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
11 dihmeetlem7.a . . . . . 6 𝐴 = (Atoms‘𝐾)
127, 8, 9, 10, 11atnle 37258 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑝𝐴𝑌𝐵) → (¬ 𝑝 𝑌 ↔ (𝑝 𝑌) = (0.‘𝐾)))
134, 5, 6, 12syl3anc 1369 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑌)) → (¬ 𝑝 𝑌 ↔ (𝑝 𝑌) = (0.‘𝐾)))
141, 13mpbid 231 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑌)) → (𝑝 𝑌) = (0.‘𝐾))
1514oveq2d 7271 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑌)) → ((𝑋 𝑌) (𝑝 𝑌)) = ((𝑋 𝑌) (0.‘𝐾)))
162hllatd 37305 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑌)) → 𝐾 ∈ Lat)
17 simpl2 1190 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑌)) → 𝑋𝐵)
187, 9latmcl 18073 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
1916, 17, 6, 18syl3anc 1369 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑌)) → (𝑋 𝑌) ∈ 𝐵)
207, 8, 9latmle2 18098 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) 𝑌)
2116, 17, 6, 20syl3anc 1369 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑌)) → (𝑋 𝑌) 𝑌)
22 dihmeetlem7.j . . . 4 = (join‘𝐾)
237, 8, 22, 9, 11atmod1i2 37800 . . 3 ((𝐾 ∈ HL ∧ (𝑝𝐴 ∧ (𝑋 𝑌) ∈ 𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑌) → ((𝑋 𝑌) (𝑝 𝑌)) = (((𝑋 𝑌) 𝑝) 𝑌))
242, 5, 19, 6, 21, 23syl131anc 1381 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑌)) → ((𝑋 𝑌) (𝑝 𝑌)) = (((𝑋 𝑌) 𝑝) 𝑌))
25 hlol 37302 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ OL)
262, 25syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑌)) → 𝐾 ∈ OL)
277, 22, 10olj01 37166 . . 3 ((𝐾 ∈ OL ∧ (𝑋 𝑌) ∈ 𝐵) → ((𝑋 𝑌) (0.‘𝐾)) = (𝑋 𝑌))
2826, 19, 27syl2anc 583 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑌)) → ((𝑋 𝑌) (0.‘𝐾)) = (𝑋 𝑌))
2915, 24, 283eqtr3d 2786 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑌)) → (((𝑋 𝑌) 𝑝) 𝑌) = (𝑋 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  lecple 16895  joincjn 17944  meetcmee 17945  0.cp0 18056  Latclat 18064  OLcol 37115  Atomscatm 37204  AtLatcal 37205  HLchlt 37291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-psubsp 37444  df-pmap 37445  df-padd 37737
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator