Proof of Theorem dihmeetlem7N
| Step | Hyp | Ref
| Expression |
| 1 | | simprr 773 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑌)) → ¬ 𝑝 ≤ 𝑌) |
| 2 | | simpl1 1192 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑌)) → 𝐾 ∈ HL) |
| 3 | | hlatl 39361 |
. . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
| 4 | 2, 3 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑌)) → 𝐾 ∈ AtLat) |
| 5 | | simprl 771 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑌)) → 𝑝 ∈ 𝐴) |
| 6 | | simpl3 1194 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑌)) → 𝑌 ∈ 𝐵) |
| 7 | | dihmeetlem7.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐾) |
| 8 | | dihmeetlem7.l |
. . . . . 6
⊢ ≤ =
(le‘𝐾) |
| 9 | | dihmeetlem7.m |
. . . . . 6
⊢ ∧ =
(meet‘𝐾) |
| 10 | | eqid 2737 |
. . . . . 6
⊢
(0.‘𝐾) =
(0.‘𝐾) |
| 11 | | dihmeetlem7.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
| 12 | 7, 8, 9, 10, 11 | atnle 39318 |
. . . . 5
⊢ ((𝐾 ∈ AtLat ∧ 𝑝 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (¬ 𝑝 ≤ 𝑌 ↔ (𝑝 ∧ 𝑌) = (0.‘𝐾))) |
| 13 | 4, 5, 6, 12 | syl3anc 1373 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑌)) → (¬ 𝑝 ≤ 𝑌 ↔ (𝑝 ∧ 𝑌) = (0.‘𝐾))) |
| 14 | 1, 13 | mpbid 232 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑌)) → (𝑝 ∧ 𝑌) = (0.‘𝐾)) |
| 15 | 14 | oveq2d 7447 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑌)) → ((𝑋 ∧ 𝑌) ∨ (𝑝 ∧ 𝑌)) = ((𝑋 ∧ 𝑌) ∨ (0.‘𝐾))) |
| 16 | 2 | hllatd 39365 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑌)) → 𝐾 ∈ Lat) |
| 17 | | simpl2 1193 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑌)) → 𝑋 ∈ 𝐵) |
| 18 | 7, 9 | latmcl 18485 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ∈ 𝐵) |
| 19 | 16, 17, 6, 18 | syl3anc 1373 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑌)) → (𝑋 ∧ 𝑌) ∈ 𝐵) |
| 20 | 7, 8, 9 | latmle2 18510 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑌) |
| 21 | 16, 17, 6, 20 | syl3anc 1373 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑌)) → (𝑋 ∧ 𝑌) ≤ 𝑌) |
| 22 | | dihmeetlem7.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
| 23 | 7, 8, 22, 9, 11 | atmod1i2 39861 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑝 ∈ 𝐴 ∧ (𝑋 ∧ 𝑌) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑌) → ((𝑋 ∧ 𝑌) ∨ (𝑝 ∧ 𝑌)) = (((𝑋 ∧ 𝑌) ∨ 𝑝) ∧ 𝑌)) |
| 24 | 2, 5, 19, 6, 21, 23 | syl131anc 1385 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑌)) → ((𝑋 ∧ 𝑌) ∨ (𝑝 ∧ 𝑌)) = (((𝑋 ∧ 𝑌) ∨ 𝑝) ∧ 𝑌)) |
| 25 | | hlol 39362 |
. . . 4
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
| 26 | 2, 25 | syl 17 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑌)) → 𝐾 ∈ OL) |
| 27 | 7, 22, 10 | olj01 39226 |
. . 3
⊢ ((𝐾 ∈ OL ∧ (𝑋 ∧ 𝑌) ∈ 𝐵) → ((𝑋 ∧ 𝑌) ∨ (0.‘𝐾)) = (𝑋 ∧ 𝑌)) |
| 28 | 26, 19, 27 | syl2anc 584 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑌)) → ((𝑋 ∧ 𝑌) ∨ (0.‘𝐾)) = (𝑋 ∧ 𝑌)) |
| 29 | 15, 24, 28 | 3eqtr3d 2785 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑌)) → (((𝑋 ∧ 𝑌) ∨ 𝑝) ∧ 𝑌) = (𝑋 ∧ 𝑌)) |