MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divadddiv Structured version   Visualization version   GIF version

Theorem divadddiv 11929
Description: Addition of two ratios. Theorem I.13 of [Apostol] p. 18. (Contributed by NM, 1-Aug-2004.) (Revised by Mario Carneiro, 2-May-2016.)
Assertion
Ref Expression
divadddiv (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ ((๐ด / ๐ถ) + (๐ต / ๐ท)) = (((๐ด ยท ๐ท) + (๐ต ยท ๐ถ)) / (๐ถ ยท ๐ท)))

Proof of Theorem divadddiv
StepHypRef Expression
1 mulcl 11194 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚) โ†’ (๐ด ยท ๐ท) โˆˆ โ„‚)
21ad2ant2r 746 . . . 4 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0)) โ†’ (๐ด ยท ๐ท) โˆˆ โ„‚)
32adantrl 715 . . 3 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ (๐ด ยท ๐ท) โˆˆ โ„‚)
4 mulcl 11194 . . . . 5 ((๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ (๐ต ยท ๐ถ) โˆˆ โ„‚)
54adantrr 716 . . . 4 ((๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0)) โ†’ (๐ต ยท ๐ถ) โˆˆ โ„‚)
65ad2ant2lr 747 . . 3 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ (๐ต ยท ๐ถ) โˆˆ โ„‚)
7 mulcl 11194 . . . . . 6 ((๐ถ โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚) โ†’ (๐ถ ยท ๐ท) โˆˆ โ„‚)
87ad2ant2r 746 . . . . 5 (((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0)) โ†’ (๐ถ ยท ๐ท) โˆˆ โ„‚)
9 mulne0 11856 . . . . 5 (((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0)) โ†’ (๐ถ ยท ๐ท) โ‰  0)
108, 9jca 513 . . . 4 (((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0)) โ†’ ((๐ถ ยท ๐ท) โˆˆ โ„‚ โˆง (๐ถ ยท ๐ท) โ‰  0))
1110adantl 483 . . 3 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ ((๐ถ ยท ๐ท) โˆˆ โ„‚ โˆง (๐ถ ยท ๐ท) โ‰  0))
12 divdir 11897 . . 3 (((๐ด ยท ๐ท) โˆˆ โ„‚ โˆง (๐ต ยท ๐ถ) โˆˆ โ„‚ โˆง ((๐ถ ยท ๐ท) โˆˆ โ„‚ โˆง (๐ถ ยท ๐ท) โ‰  0)) โ†’ (((๐ด ยท ๐ท) + (๐ต ยท ๐ถ)) / (๐ถ ยท ๐ท)) = (((๐ด ยท ๐ท) / (๐ถ ยท ๐ท)) + ((๐ต ยท ๐ถ) / (๐ถ ยท ๐ท))))
133, 6, 11, 12syl3anc 1372 . 2 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ (((๐ด ยท ๐ท) + (๐ต ยท ๐ถ)) / (๐ถ ยท ๐ท)) = (((๐ด ยท ๐ท) / (๐ถ ยท ๐ท)) + ((๐ต ยท ๐ถ) / (๐ถ ยท ๐ท))))
14 simpll 766 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ ๐ด โˆˆ โ„‚)
15 simprr 772 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))
1615simpld 496 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ ๐ท โˆˆ โ„‚)
1714, 16mulcomd 11235 . . . . 5 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ (๐ด ยท ๐ท) = (๐ท ยท ๐ด))
18 simprll 778 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ ๐ถ โˆˆ โ„‚)
1918, 16mulcomd 11235 . . . . 5 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ (๐ถ ยท ๐ท) = (๐ท ยท ๐ถ))
2017, 19oveq12d 7427 . . . 4 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ ((๐ด ยท ๐ท) / (๐ถ ยท ๐ท)) = ((๐ท ยท ๐ด) / (๐ท ยท ๐ถ)))
21 simprl 770 . . . . 5 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ (๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0))
22 divcan5 11916 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0)) โ†’ ((๐ท ยท ๐ด) / (๐ท ยท ๐ถ)) = (๐ด / ๐ถ))
2314, 21, 15, 22syl3anc 1372 . . . 4 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ ((๐ท ยท ๐ด) / (๐ท ยท ๐ถ)) = (๐ด / ๐ถ))
2420, 23eqtrd 2773 . . 3 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ ((๐ด ยท ๐ท) / (๐ถ ยท ๐ท)) = (๐ด / ๐ถ))
25 simplr 768 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ ๐ต โˆˆ โ„‚)
2625, 18mulcomd 11235 . . . . 5 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ (๐ต ยท ๐ถ) = (๐ถ ยท ๐ต))
2726oveq1d 7424 . . . 4 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ ((๐ต ยท ๐ถ) / (๐ถ ยท ๐ท)) = ((๐ถ ยท ๐ต) / (๐ถ ยท ๐ท)))
28 divcan5 11916 . . . . 5 ((๐ต โˆˆ โ„‚ โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0) โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0)) โ†’ ((๐ถ ยท ๐ต) / (๐ถ ยท ๐ท)) = (๐ต / ๐ท))
2925, 15, 21, 28syl3anc 1372 . . . 4 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ ((๐ถ ยท ๐ต) / (๐ถ ยท ๐ท)) = (๐ต / ๐ท))
3027, 29eqtrd 2773 . . 3 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ ((๐ต ยท ๐ถ) / (๐ถ ยท ๐ท)) = (๐ต / ๐ท))
3124, 30oveq12d 7427 . 2 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ (((๐ด ยท ๐ท) / (๐ถ ยท ๐ท)) + ((๐ต ยท ๐ถ) / (๐ถ ยท ๐ท))) = ((๐ด / ๐ถ) + (๐ต / ๐ท)))
3213, 31eqtr2d 2774 1 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ ((๐ด / ๐ถ) + (๐ต / ๐ท)) = (((๐ด ยท ๐ท) + (๐ต ยท ๐ถ)) / (๐ถ ยท ๐ท)))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 397   = wceq 1542   โˆˆ wcel 2107   โ‰  wne 2941  (class class class)co 7409  โ„‚cc 11108  0cc0 11110   + caddc 11113   ยท cmul 11115   / cdiv 11871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872
This theorem is referenced by:  divsubdiv  11930  divadddivi  11976  divadddivd  12034  qaddcl  12949
  Copyright terms: Public domain W3C validator