| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divmuldivi | Structured version Visualization version GIF version | ||
| Description: Multiplication of two ratios. Theorem I.14 of [Apostol] p. 18. (Contributed by NM, 16-Feb-1995.) |
| Ref | Expression |
|---|---|
| divclz.1 | ⊢ 𝐴 ∈ ℂ |
| divclz.2 | ⊢ 𝐵 ∈ ℂ |
| divmulz.3 | ⊢ 𝐶 ∈ ℂ |
| divmuldiv.4 | ⊢ 𝐷 ∈ ℂ |
| divmuldiv.5 | ⊢ 𝐵 ≠ 0 |
| divmuldiv.6 | ⊢ 𝐷 ≠ 0 |
| Ref | Expression |
|---|---|
| divmuldivi | ⊢ ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divclz.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | divmulz.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
| 3 | divclz.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
| 4 | divmuldiv.5 | . . 3 ⊢ 𝐵 ≠ 0 | |
| 5 | 3, 4 | pm3.2i 470 | . 2 ⊢ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) |
| 6 | divmuldiv.4 | . . 3 ⊢ 𝐷 ∈ ℂ | |
| 7 | divmuldiv.6 | . . 3 ⊢ 𝐷 ≠ 0 | |
| 8 | 6, 7 | pm3.2i 470 | . 2 ⊢ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0) |
| 9 | divmuldiv 11858 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷))) | |
| 10 | 1, 2, 5, 8, 9 | mp4an 693 | 1 ⊢ ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 (class class class)co 7369 ℂcc 11042 0cc0 11044 · cmul 11049 / cdiv 11811 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 |
| This theorem is referenced by: divmul13i 11919 8th4div3 12378 sqrecii 14124 sqdivi 14126 bpoly3 16000 efival 16096 ef01bndlem 16128 sincos4thpi 26398 sincos6thpi 26401 bposlem8 27178 bposlem9 27179 quad3 35630 wallispi2lem1 46042 |
| Copyright terms: Public domain | W3C validator |