| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divmuldivi | Structured version Visualization version GIF version | ||
| Description: Multiplication of two ratios. Theorem I.14 of [Apostol] p. 18. (Contributed by NM, 16-Feb-1995.) |
| Ref | Expression |
|---|---|
| divclz.1 | ⊢ 𝐴 ∈ ℂ |
| divclz.2 | ⊢ 𝐵 ∈ ℂ |
| divmulz.3 | ⊢ 𝐶 ∈ ℂ |
| divmuldiv.4 | ⊢ 𝐷 ∈ ℂ |
| divmuldiv.5 | ⊢ 𝐵 ≠ 0 |
| divmuldiv.6 | ⊢ 𝐷 ≠ 0 |
| Ref | Expression |
|---|---|
| divmuldivi | ⊢ ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divclz.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | divmulz.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
| 3 | divclz.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
| 4 | divmuldiv.5 | . . 3 ⊢ 𝐵 ≠ 0 | |
| 5 | 3, 4 | pm3.2i 470 | . 2 ⊢ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) |
| 6 | divmuldiv.4 | . . 3 ⊢ 𝐷 ∈ ℂ | |
| 7 | divmuldiv.6 | . . 3 ⊢ 𝐷 ≠ 0 | |
| 8 | 6, 7 | pm3.2i 470 | . 2 ⊢ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0) |
| 9 | divmuldiv 11824 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷))) | |
| 10 | 1, 2, 5, 8, 9 | mp4an 693 | 1 ⊢ ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 (class class class)co 7349 ℂcc 11007 0cc0 11009 · cmul 11014 / cdiv 11777 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 |
| This theorem is referenced by: divmul13i 11885 8th4div3 12344 sqrecii 14090 sqdivi 14092 bpoly3 15965 efival 16061 ef01bndlem 16093 sincos4thpi 26420 sincos6thpi 26423 bposlem8 27200 bposlem9 27201 quad3 35643 wallispi2lem1 46052 |
| Copyright terms: Public domain | W3C validator |