Proof of Theorem divmuleq
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | divcl 11928 | . . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (𝐴 / 𝐶) ∈ ℂ) | 
| 2 | 1 | 3expb 1121 | . . . 4
⊢ ((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐴 / 𝐶) ∈ ℂ) | 
| 3 | 2 | ad2ant2r 747 | . . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → (𝐴 / 𝐶) ∈ ℂ) | 
| 4 |  | divcl 11928 | . . . . 5
⊢ ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0) → (𝐵 / 𝐷) ∈ ℂ) | 
| 5 | 4 | 3expb 1121 | . . . 4
⊢ ((𝐵 ∈ ℂ ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (𝐵 / 𝐷) ∈ ℂ) | 
| 6 | 5 | ad2ant2l 746 | . . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → (𝐵 / 𝐷) ∈ ℂ) | 
| 7 |  | mulcl 11239 | . . . . . 6
⊢ ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 · 𝐷) ∈ ℂ) | 
| 8 | 7 | ad2ant2r 747 | . . . . 5
⊢ (((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (𝐶 · 𝐷) ∈ ℂ) | 
| 9 |  | mulne0 11905 | . . . . 5
⊢ (((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (𝐶 · 𝐷) ≠ 0) | 
| 10 | 8, 9 | jca 511 | . . . 4
⊢ (((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → ((𝐶 · 𝐷) ∈ ℂ ∧ (𝐶 · 𝐷) ≠ 0)) | 
| 11 | 10 | adantl 481 | . . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐶 · 𝐷) ∈ ℂ ∧ (𝐶 · 𝐷) ≠ 0)) | 
| 12 |  | mulcan2 11901 | . . 3
⊢ (((𝐴 / 𝐶) ∈ ℂ ∧ (𝐵 / 𝐷) ∈ ℂ ∧ ((𝐶 · 𝐷) ∈ ℂ ∧ (𝐶 · 𝐷) ≠ 0)) → (((𝐴 / 𝐶) · (𝐶 · 𝐷)) = ((𝐵 / 𝐷) · (𝐶 · 𝐷)) ↔ (𝐴 / 𝐶) = (𝐵 / 𝐷))) | 
| 13 | 3, 6, 11, 12 | syl3anc 1373 | . 2
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → (((𝐴 / 𝐶) · (𝐶 · 𝐷)) = ((𝐵 / 𝐷) · (𝐶 · 𝐷)) ↔ (𝐴 / 𝐶) = (𝐵 / 𝐷))) | 
| 14 |  | simprll 779 | . . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → 𝐶 ∈
ℂ) | 
| 15 |  | simprrl 781 | . . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → 𝐷 ∈
ℂ) | 
| 16 | 3, 14, 15 | mulassd 11284 | . . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → (((𝐴 / 𝐶) · 𝐶) · 𝐷) = ((𝐴 / 𝐶) · (𝐶 · 𝐷))) | 
| 17 |  | divcan1 11931 | . . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → ((𝐴 / 𝐶) · 𝐶) = 𝐴) | 
| 18 | 17 | 3expb 1121 | . . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐶) · 𝐶) = 𝐴) | 
| 19 | 18 | ad2ant2r 747 | . . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐶) · 𝐶) = 𝐴) | 
| 20 | 19 | oveq1d 7446 | . . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → (((𝐴 / 𝐶) · 𝐶) · 𝐷) = (𝐴 · 𝐷)) | 
| 21 | 16, 20 | eqtr3d 2779 | . . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐶) · (𝐶 · 𝐷)) = (𝐴 · 𝐷)) | 
| 22 | 14, 15 | mulcomd 11282 | . . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → (𝐶 · 𝐷) = (𝐷 · 𝐶)) | 
| 23 | 22 | oveq2d 7447 | . . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐵 / 𝐷) · (𝐶 · 𝐷)) = ((𝐵 / 𝐷) · (𝐷 · 𝐶))) | 
| 24 | 6, 15, 14 | mulassd 11284 | . . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → (((𝐵 / 𝐷) · 𝐷) · 𝐶) = ((𝐵 / 𝐷) · (𝐷 · 𝐶))) | 
| 25 |  | divcan1 11931 | . . . . . . 7
⊢ ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0) → ((𝐵 / 𝐷) · 𝐷) = 𝐵) | 
| 26 | 25 | 3expb 1121 | . . . . . 6
⊢ ((𝐵 ∈ ℂ ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → ((𝐵 / 𝐷) · 𝐷) = 𝐵) | 
| 27 | 26 | ad2ant2l 746 | . . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐵 / 𝐷) · 𝐷) = 𝐵) | 
| 28 | 27 | oveq1d 7446 | . . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → (((𝐵 / 𝐷) · 𝐷) · 𝐶) = (𝐵 · 𝐶)) | 
| 29 | 23, 24, 28 | 3eqtr2d 2783 | . . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐵 / 𝐷) · (𝐶 · 𝐷)) = (𝐵 · 𝐶)) | 
| 30 | 21, 29 | eqeq12d 2753 | . 2
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → (((𝐴 / 𝐶) · (𝐶 · 𝐷)) = ((𝐵 / 𝐷) · (𝐶 · 𝐷)) ↔ (𝐴 · 𝐷) = (𝐵 · 𝐶))) | 
| 31 | 13, 30 | bitr3d 281 | 1
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐶) = (𝐵 / 𝐷) ↔ (𝐴 · 𝐷) = (𝐵 · 𝐶))) |