Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmmcand Structured version   Visualization version   GIF version

Theorem dmmcand 44321
Description: Cancellation law for division and multiplication. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
dmmcand.a (๐œ‘ โ†’ ๐ด โˆˆ โ„‚)
dmmcand.b (๐œ‘ โ†’ ๐ต โˆˆ โ„‚)
dmmcand.c (๐œ‘ โ†’ ๐ถ โˆˆ โ„‚)
dmmcand.bn0 (๐œ‘ โ†’ ๐ต โ‰  0)
Assertion
Ref Expression
dmmcand (๐œ‘ โ†’ ((๐ด / ๐ต) ยท (๐ต ยท ๐ถ)) = (๐ด ยท ๐ถ))

Proof of Theorem dmmcand
StepHypRef Expression
1 dmmcand.a . . 3 (๐œ‘ โ†’ ๐ด โˆˆ โ„‚)
2 dmmcand.b . . 3 (๐œ‘ โ†’ ๐ต โˆˆ โ„‚)
3 dmmcand.c . . . 4 (๐œ‘ โ†’ ๐ถ โˆˆ โ„‚)
42, 3mulcld 11238 . . 3 (๐œ‘ โ†’ (๐ต ยท ๐ถ) โˆˆ โ„‚)
5 dmmcand.bn0 . . 3 (๐œ‘ โ†’ ๐ต โ‰  0)
61, 2, 4, 5div32d 12017 . 2 (๐œ‘ โ†’ ((๐ด / ๐ต) ยท (๐ต ยท ๐ถ)) = (๐ด ยท ((๐ต ยท ๐ถ) / ๐ต)))
73, 2, 5divcan3d 11999 . . 3 (๐œ‘ โ†’ ((๐ต ยท ๐ถ) / ๐ต) = ๐ถ)
87oveq2d 7427 . 2 (๐œ‘ โ†’ (๐ด ยท ((๐ต ยท ๐ถ) / ๐ต)) = (๐ด ยท ๐ถ))
9 eqidd 2731 . 2 (๐œ‘ โ†’ (๐ด ยท ๐ถ) = (๐ด ยท ๐ถ))
106, 8, 93eqtrd 2774 1 (๐œ‘ โ†’ ((๐ด / ๐ต) ยท (๐ต ยท ๐ถ)) = (๐ด ยท ๐ถ))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   = wceq 1539   โˆˆ wcel 2104   โ‰  wne 2938  (class class class)co 7411  โ„‚cc 11110  0cc0 11112   ยท cmul 11117   / cdiv 11875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876
This theorem is referenced by:  dvnprodlem2  44961
  Copyright terms: Public domain W3C validator