Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmmcand Structured version   Visualization version   GIF version

Theorem dmmcand 45230
Description: Cancellation law for division and multiplication. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
dmmcand.a (𝜑𝐴 ∈ ℂ)
dmmcand.b (𝜑𝐵 ∈ ℂ)
dmmcand.c (𝜑𝐶 ∈ ℂ)
dmmcand.bn0 (𝜑𝐵 ≠ 0)
Assertion
Ref Expression
dmmcand (𝜑 → ((𝐴 / 𝐵) · (𝐵 · 𝐶)) = (𝐴 · 𝐶))

Proof of Theorem dmmcand
StepHypRef Expression
1 dmmcand.a . . 3 (𝜑𝐴 ∈ ℂ)
2 dmmcand.b . . 3 (𝜑𝐵 ∈ ℂ)
3 dmmcand.c . . . 4 (𝜑𝐶 ∈ ℂ)
42, 3mulcld 11312 . . 3 (𝜑 → (𝐵 · 𝐶) ∈ ℂ)
5 dmmcand.bn0 . . 3 (𝜑𝐵 ≠ 0)
61, 2, 4, 5div32d 12095 . 2 (𝜑 → ((𝐴 / 𝐵) · (𝐵 · 𝐶)) = (𝐴 · ((𝐵 · 𝐶) / 𝐵)))
73, 2, 5divcan3d 12077 . . 3 (𝜑 → ((𝐵 · 𝐶) / 𝐵) = 𝐶)
87oveq2d 7466 . 2 (𝜑 → (𝐴 · ((𝐵 · 𝐶) / 𝐵)) = (𝐴 · 𝐶))
9 eqidd 2741 . 2 (𝜑 → (𝐴 · 𝐶) = (𝐴 · 𝐶))
106, 8, 93eqtrd 2784 1 (𝜑 → ((𝐴 / 𝐵) · (𝐵 · 𝐶)) = (𝐴 · 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wne 2946  (class class class)co 7450  cc 11184  0cc0 11186   · cmul 11191   / cdiv 11949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-resscn 11243  ax-1cn 11244  ax-icn 11245  ax-addcl 11246  ax-addrcl 11247  ax-mulcl 11248  ax-mulrcl 11249  ax-mulcom 11250  ax-addass 11251  ax-mulass 11252  ax-distr 11253  ax-i2m1 11254  ax-1ne0 11255  ax-1rid 11256  ax-rnegex 11257  ax-rrecex 11258  ax-cnre 11259  ax-pre-lttri 11260  ax-pre-lttrn 11261  ax-pre-ltadd 11262  ax-pre-mulgt0 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-riota 7406  df-ov 7453  df-oprab 7454  df-mpo 7455  df-er 8765  df-en 9006  df-dom 9007  df-sdom 9008  df-pnf 11328  df-mnf 11329  df-xr 11330  df-ltxr 11331  df-le 11332  df-sub 11524  df-neg 11525  df-div 11950
This theorem is referenced by:  dvnprodlem2  45870
  Copyright terms: Public domain W3C validator