Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > div32d | Structured version Visualization version GIF version |
Description: A commutative/associative law for division. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
div1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
divcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
divmuld.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
divmuld.4 | ⊢ (𝜑 → 𝐵 ≠ 0) |
Ref | Expression |
---|---|
div32d | ⊢ (𝜑 → ((𝐴 / 𝐵) · 𝐶) = (𝐴 · (𝐶 / 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | div1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | divcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | divmuld.4 | . 2 ⊢ (𝜑 → 𝐵 ≠ 0) | |
4 | divmuld.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
5 | div32 11703 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℂ) → ((𝐴 / 𝐵) · 𝐶) = (𝐴 · (𝐶 / 𝐵))) | |
6 | 1, 2, 3, 4, 5 | syl121anc 1375 | 1 ⊢ (𝜑 → ((𝐴 / 𝐵) · 𝐶) = (𝐴 · (𝐶 / 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 (class class class)co 7307 ℂcc 10919 0cc0 10921 · cmul 10926 / cdiv 11682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3304 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-po 5514 df-so 5515 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-div 11683 |
This theorem is referenced by: logdivlti 25824 root1eq1 25957 lgsquadlem1 26577 selberg3lem1 26754 selberg4lem1 26757 selberg3r 26766 selberg4r 26767 selberg34r 26768 pntrlog2bndlem5 26778 pntrlog2bndlem6 26780 sqsscirc1 31907 hgt750leme 32687 bcprod 33753 aks4d1p1p7 40282 binomcxplemnotnn0 42187 dmmcand 43080 dvnxpaek 43712 dvnprodlem2 43717 stoweidlem26 43796 wallispi2 43843 stirlinglem4 43847 stirlinglem5 43848 stirlinglem7 43850 dirkercncflem2 43874 fourierdlem66 43942 fouriersw 44001 sharhght 44625 |
Copyright terms: Public domain | W3C validator |