MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  div32d Structured version   Visualization version   GIF version

Theorem div32d 12013
Description: A commutative/associative law for division. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
div1d.1 (๐œ‘ โ†’ ๐ด โˆˆ โ„‚)
divcld.2 (๐œ‘ โ†’ ๐ต โˆˆ โ„‚)
divmuld.3 (๐œ‘ โ†’ ๐ถ โˆˆ โ„‚)
divmuld.4 (๐œ‘ โ†’ ๐ต โ‰  0)
Assertion
Ref Expression
div32d (๐œ‘ โ†’ ((๐ด / ๐ต) ยท ๐ถ) = (๐ด ยท (๐ถ / ๐ต)))

Proof of Theorem div32d
StepHypRef Expression
1 div1d.1 . 2 (๐œ‘ โ†’ ๐ด โˆˆ โ„‚)
2 divcld.2 . 2 (๐œ‘ โ†’ ๐ต โˆˆ โ„‚)
3 divmuld.4 . 2 (๐œ‘ โ†’ ๐ต โ‰  0)
4 divmuld.3 . 2 (๐œ‘ โ†’ ๐ถ โˆˆ โ„‚)
5 div32 11892 . 2 ((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต โ‰  0) โˆง ๐ถ โˆˆ โ„‚) โ†’ ((๐ด / ๐ต) ยท ๐ถ) = (๐ด ยท (๐ถ / ๐ต)))
61, 2, 3, 4, 5syl121anc 1376 1 (๐œ‘ โ†’ ((๐ด / ๐ต) ยท ๐ถ) = (๐ด ยท (๐ถ / ๐ต)))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   = wceq 1542   โˆˆ wcel 2107   โ‰  wne 2941  (class class class)co 7409  โ„‚cc 11108  0cc0 11110   ยท cmul 11115   / cdiv 11871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872
This theorem is referenced by:  logdivlti  26128  root1eq1  26263  lgsquadlem1  26883  selberg3lem1  27060  selberg4lem1  27063  selberg3r  27072  selberg4r  27073  selberg34r  27074  pntrlog2bndlem5  27084  pntrlog2bndlem6  27086  sqsscirc1  32888  hgt750leme  33670  bcprod  34708  aks4d1p1p7  40939  binomcxplemnotnn0  43115  dmmcand  44023  dvnxpaek  44658  dvnprodlem2  44663  stoweidlem26  44742  wallispi2  44789  stirlinglem4  44793  stirlinglem5  44794  stirlinglem7  44796  dirkercncflem2  44820  fourierdlem66  44888  fouriersw  44947  sharhght  45581
  Copyright terms: Public domain W3C validator