MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnflem1a Structured version   Visualization version   GIF version

Theorem cantnflem1a 9141
Description: Lemma for cantnf 9149. (Contributed by Mario Carneiro, 4-Jun-2015.) (Revised by AV, 2-Jul-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
oemapval.f (𝜑𝐹𝑆)
oemapval.g (𝜑𝐺𝑆)
oemapvali.r (𝜑𝐹𝑇𝐺)
oemapvali.x 𝑋 = {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)}
Assertion
Ref Expression
cantnflem1a (𝜑𝑋 ∈ (𝐺 supp ∅))
Distinct variable groups:   𝑤,𝑐,𝑥,𝑦,𝑧,𝐵   𝐴,𝑐,𝑤,𝑥,𝑦,𝑧   𝑇,𝑐   𝑤,𝐹,𝑥,𝑦,𝑧   𝑆,𝑐,𝑥,𝑦,𝑧   𝐺,𝑐,𝑤,𝑥,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑤,𝑋,𝑥,𝑦,𝑧   𝐹,𝑐   𝜑,𝑐
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)   𝑋(𝑐)

Proof of Theorem cantnflem1a
StepHypRef Expression
1 cantnfs.s . . . 4 𝑆 = dom (𝐴 CNF 𝐵)
2 cantnfs.a . . . 4 (𝜑𝐴 ∈ On)
3 cantnfs.b . . . 4 (𝜑𝐵 ∈ On)
4 oemapval.t . . . 4 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
5 oemapval.f . . . 4 (𝜑𝐹𝑆)
6 oemapval.g . . . 4 (𝜑𝐺𝑆)
7 oemapvali.r . . . 4 (𝜑𝐹𝑇𝐺)
8 oemapvali.x . . . 4 𝑋 = {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)}
91, 2, 3, 4, 5, 6, 7, 8oemapvali 9140 . . 3 (𝜑 → (𝑋𝐵 ∧ (𝐹𝑋) ∈ (𝐺𝑋) ∧ ∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤))))
109simp1d 1139 . 2 (𝜑𝑋𝐵)
119simp2d 1140 . . 3 (𝜑 → (𝐹𝑋) ∈ (𝐺𝑋))
1211ne0d 4284 . 2 (𝜑 → (𝐺𝑋) ≠ ∅)
131, 2, 3cantnfs 9122 . . . . . 6 (𝜑 → (𝐺𝑆 ↔ (𝐺:𝐵𝐴𝐺 finSupp ∅)))
146, 13mpbid 235 . . . . 5 (𝜑 → (𝐺:𝐵𝐴𝐺 finSupp ∅))
1514simpld 498 . . . 4 (𝜑𝐺:𝐵𝐴)
1615ffnd 6504 . . 3 (𝜑𝐺 Fn 𝐵)
17 0ex 5198 . . . 4 ∅ ∈ V
1817a1i 11 . . 3 (𝜑 → ∅ ∈ V)
19 elsuppfn 7830 . . 3 ((𝐺 Fn 𝐵𝐵 ∈ On ∧ ∅ ∈ V) → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋𝐵 ∧ (𝐺𝑋) ≠ ∅)))
2016, 3, 18, 19syl3anc 1368 . 2 (𝜑 → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋𝐵 ∧ (𝐺𝑋) ≠ ∅)))
2110, 12, 20mpbir2and 712 1 (𝜑𝑋 ∈ (𝐺 supp ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wne 3014  wral 3133  wrex 3134  {crab 3137  Vcvv 3480  c0 4276   cuni 4825   class class class wbr 5053  {copab 5115  dom cdm 5543  Oncon0 6179   Fn wfn 6339  wf 6340  cfv 6344  (class class class)co 7146   supp csupp 7822   finSupp cfsupp 8826   CNF ccnf 9117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4826  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-ov 7149  df-oprab 7150  df-mpo 7151  df-om 7572  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-seqom 8076  df-1o 8094  df-er 8281  df-map 8400  df-en 8502  df-fin 8505  df-fsupp 8827  df-cnf 9118
This theorem is referenced by:  cantnflem1b  9142  cantnflem1d  9144  cantnflem1  9145
  Copyright terms: Public domain W3C validator