MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnflem1a Structured version   Visualization version   GIF version

Theorem cantnflem1a 9723
Description: Lemma for cantnf 9731. (Contributed by Mario Carneiro, 4-Jun-2015.) (Revised by AV, 2-Jul-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
oemapval.f (𝜑𝐹𝑆)
oemapval.g (𝜑𝐺𝑆)
oemapvali.r (𝜑𝐹𝑇𝐺)
oemapvali.x 𝑋 = {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)}
Assertion
Ref Expression
cantnflem1a (𝜑𝑋 ∈ (𝐺 supp ∅))
Distinct variable groups:   𝑤,𝑐,𝑥,𝑦,𝑧,𝐵   𝐴,𝑐,𝑤,𝑥,𝑦,𝑧   𝑇,𝑐   𝑤,𝐹,𝑥,𝑦,𝑧   𝑆,𝑐,𝑥,𝑦,𝑧   𝐺,𝑐,𝑤,𝑥,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑤,𝑋,𝑥,𝑦,𝑧   𝐹,𝑐   𝜑,𝑐
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)   𝑋(𝑐)

Proof of Theorem cantnflem1a
StepHypRef Expression
1 cantnfs.s . . . 4 𝑆 = dom (𝐴 CNF 𝐵)
2 cantnfs.a . . . 4 (𝜑𝐴 ∈ On)
3 cantnfs.b . . . 4 (𝜑𝐵 ∈ On)
4 oemapval.t . . . 4 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
5 oemapval.f . . . 4 (𝜑𝐹𝑆)
6 oemapval.g . . . 4 (𝜑𝐺𝑆)
7 oemapvali.r . . . 4 (𝜑𝐹𝑇𝐺)
8 oemapvali.x . . . 4 𝑋 = {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)}
91, 2, 3, 4, 5, 6, 7, 8oemapvali 9722 . . 3 (𝜑 → (𝑋𝐵 ∧ (𝐹𝑋) ∈ (𝐺𝑋) ∧ ∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤))))
109simp1d 1141 . 2 (𝜑𝑋𝐵)
119simp2d 1142 . . 3 (𝜑 → (𝐹𝑋) ∈ (𝐺𝑋))
1211ne0d 4348 . 2 (𝜑 → (𝐺𝑋) ≠ ∅)
131, 2, 3cantnfs 9704 . . . . . 6 (𝜑 → (𝐺𝑆 ↔ (𝐺:𝐵𝐴𝐺 finSupp ∅)))
146, 13mpbid 232 . . . . 5 (𝜑 → (𝐺:𝐵𝐴𝐺 finSupp ∅))
1514simpld 494 . . . 4 (𝜑𝐺:𝐵𝐴)
1615ffnd 6738 . . 3 (𝜑𝐺 Fn 𝐵)
17 0ex 5313 . . . 4 ∅ ∈ V
1817a1i 11 . . 3 (𝜑 → ∅ ∈ V)
19 elsuppfn 8194 . . 3 ((𝐺 Fn 𝐵𝐵 ∈ On ∧ ∅ ∈ V) → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋𝐵 ∧ (𝐺𝑋) ≠ ∅)))
2016, 3, 18, 19syl3anc 1370 . 2 (𝜑 → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋𝐵 ∧ (𝐺𝑋) ≠ ∅)))
2110, 12, 20mpbir2and 713 1 (𝜑𝑋 ∈ (𝐺 supp ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  {crab 3433  Vcvv 3478  c0 4339   cuni 4912   class class class wbr 5148  {copab 5210  dom cdm 5689  Oncon0 6386   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431   supp csupp 8184   finSupp cfsupp 9399   CNF ccnf 9699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-seqom 8487  df-1o 8505  df-map 8867  df-en 8985  df-fin 8988  df-fsupp 9400  df-cnf 9700
This theorem is referenced by:  cantnflem1b  9724  cantnflem1d  9726  cantnflem1  9727
  Copyright terms: Public domain W3C validator