![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cantnflem1a | Structured version Visualization version GIF version |
Description: Lemma for cantnf 9690. (Contributed by Mario Carneiro, 4-Jun-2015.) (Revised by AV, 2-Jul-2019.) |
Ref | Expression |
---|---|
cantnfs.s | ⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
cantnfs.a | ⊢ (𝜑 → 𝐴 ∈ On) |
cantnfs.b | ⊢ (𝜑 → 𝐵 ∈ On) |
oemapval.t | ⊢ 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} |
oemapval.f | ⊢ (𝜑 → 𝐹 ∈ 𝑆) |
oemapval.g | ⊢ (𝜑 → 𝐺 ∈ 𝑆) |
oemapvali.r | ⊢ (𝜑 → 𝐹𝑇𝐺) |
oemapvali.x | ⊢ 𝑋 = ∪ {𝑐 ∈ 𝐵 ∣ (𝐹‘𝑐) ∈ (𝐺‘𝑐)} |
Ref | Expression |
---|---|
cantnflem1a | ⊢ (𝜑 → 𝑋 ∈ (𝐺 supp ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cantnfs.s | . . . 4 ⊢ 𝑆 = dom (𝐴 CNF 𝐵) | |
2 | cantnfs.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ On) | |
3 | cantnfs.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ On) | |
4 | oemapval.t | . . . 4 ⊢ 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} | |
5 | oemapval.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑆) | |
6 | oemapval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝑆) | |
7 | oemapvali.r | . . . 4 ⊢ (𝜑 → 𝐹𝑇𝐺) | |
8 | oemapvali.x | . . . 4 ⊢ 𝑋 = ∪ {𝑐 ∈ 𝐵 ∣ (𝐹‘𝑐) ∈ (𝐺‘𝑐)} | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | oemapvali 9681 | . . 3 ⊢ (𝜑 → (𝑋 ∈ 𝐵 ∧ (𝐹‘𝑋) ∈ (𝐺‘𝑋) ∧ ∀𝑤 ∈ 𝐵 (𝑋 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤)))) |
10 | 9 | simp1d 1139 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
11 | 9 | simp2d 1140 | . . 3 ⊢ (𝜑 → (𝐹‘𝑋) ∈ (𝐺‘𝑋)) |
12 | 11 | ne0d 4330 | . 2 ⊢ (𝜑 → (𝐺‘𝑋) ≠ ∅) |
13 | 1, 2, 3 | cantnfs 9663 | . . . . . 6 ⊢ (𝜑 → (𝐺 ∈ 𝑆 ↔ (𝐺:𝐵⟶𝐴 ∧ 𝐺 finSupp ∅))) |
14 | 6, 13 | mpbid 231 | . . . . 5 ⊢ (𝜑 → (𝐺:𝐵⟶𝐴 ∧ 𝐺 finSupp ∅)) |
15 | 14 | simpld 494 | . . . 4 ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) |
16 | 15 | ffnd 6712 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐵) |
17 | 0ex 5300 | . . . 4 ⊢ ∅ ∈ V | |
18 | 17 | a1i 11 | . . 3 ⊢ (𝜑 → ∅ ∈ V) |
19 | elsuppfn 8156 | . . 3 ⊢ ((𝐺 Fn 𝐵 ∧ 𝐵 ∈ On ∧ ∅ ∈ V) → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋 ∈ 𝐵 ∧ (𝐺‘𝑋) ≠ ∅))) | |
20 | 16, 3, 18, 19 | syl3anc 1368 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋 ∈ 𝐵 ∧ (𝐺‘𝑋) ≠ ∅))) |
21 | 10, 12, 20 | mpbir2and 710 | 1 ⊢ (𝜑 → 𝑋 ∈ (𝐺 supp ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ≠ wne 2934 ∀wral 3055 ∃wrex 3064 {crab 3426 Vcvv 3468 ∅c0 4317 ∪ cuni 4902 class class class wbr 5141 {copab 5203 dom cdm 5669 Oncon0 6358 Fn wfn 6532 ⟶wf 6533 ‘cfv 6537 (class class class)co 7405 supp csupp 8146 finSupp cfsupp 9363 CNF ccnf 9658 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-supp 8147 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-seqom 8449 df-1o 8467 df-map 8824 df-en 8942 df-fin 8945 df-fsupp 9364 df-cnf 9659 |
This theorem is referenced by: cantnflem1b 9683 cantnflem1d 9685 cantnflem1 9686 |
Copyright terms: Public domain | W3C validator |