| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cantnflem1a | Structured version Visualization version GIF version | ||
| Description: Lemma for cantnf 9646. (Contributed by Mario Carneiro, 4-Jun-2015.) (Revised by AV, 2-Jul-2019.) |
| Ref | Expression |
|---|---|
| cantnfs.s | ⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
| cantnfs.a | ⊢ (𝜑 → 𝐴 ∈ On) |
| cantnfs.b | ⊢ (𝜑 → 𝐵 ∈ On) |
| oemapval.t | ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} |
| oemapval.f | ⊢ (𝜑 → 𝐹 ∈ 𝑆) |
| oemapval.g | ⊢ (𝜑 → 𝐺 ∈ 𝑆) |
| oemapvali.r | ⊢ (𝜑 → 𝐹𝑇𝐺) |
| oemapvali.x | ⊢ 𝑋 = ∪ {𝑐 ∈ 𝐵 ∣ (𝐹‘𝑐) ∈ (𝐺‘𝑐)} |
| Ref | Expression |
|---|---|
| cantnflem1a | ⊢ (𝜑 → 𝑋 ∈ (𝐺 supp ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | . . . 4 ⊢ 𝑆 = dom (𝐴 CNF 𝐵) | |
| 2 | cantnfs.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ On) | |
| 3 | cantnfs.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ On) | |
| 4 | oemapval.t | . . . 4 ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} | |
| 5 | oemapval.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑆) | |
| 6 | oemapval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝑆) | |
| 7 | oemapvali.r | . . . 4 ⊢ (𝜑 → 𝐹𝑇𝐺) | |
| 8 | oemapvali.x | . . . 4 ⊢ 𝑋 = ∪ {𝑐 ∈ 𝐵 ∣ (𝐹‘𝑐) ∈ (𝐺‘𝑐)} | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | oemapvali 9637 | . . 3 ⊢ (𝜑 → (𝑋 ∈ 𝐵 ∧ (𝐹‘𝑋) ∈ (𝐺‘𝑋) ∧ ∀𝑤 ∈ 𝐵 (𝑋 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤)))) |
| 10 | 9 | simp1d 1142 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 11 | 9 | simp2d 1143 | . . 3 ⊢ (𝜑 → (𝐹‘𝑋) ∈ (𝐺‘𝑋)) |
| 12 | 11 | ne0d 4305 | . 2 ⊢ (𝜑 → (𝐺‘𝑋) ≠ ∅) |
| 13 | 1, 2, 3 | cantnfs 9619 | . . . . . 6 ⊢ (𝜑 → (𝐺 ∈ 𝑆 ↔ (𝐺:𝐵⟶𝐴 ∧ 𝐺 finSupp ∅))) |
| 14 | 6, 13 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (𝐺:𝐵⟶𝐴 ∧ 𝐺 finSupp ∅)) |
| 15 | 14 | simpld 494 | . . . 4 ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) |
| 16 | 15 | ffnd 6689 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐵) |
| 17 | 0ex 5262 | . . . 4 ⊢ ∅ ∈ V | |
| 18 | 17 | a1i 11 | . . 3 ⊢ (𝜑 → ∅ ∈ V) |
| 19 | elsuppfn 8149 | . . 3 ⊢ ((𝐺 Fn 𝐵 ∧ 𝐵 ∈ On ∧ ∅ ∈ V) → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋 ∈ 𝐵 ∧ (𝐺‘𝑋) ≠ ∅))) | |
| 20 | 16, 3, 18, 19 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋 ∈ 𝐵 ∧ (𝐺‘𝑋) ≠ ∅))) |
| 21 | 10, 12, 20 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝑋 ∈ (𝐺 supp ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 {crab 3405 Vcvv 3447 ∅c0 4296 ∪ cuni 4871 class class class wbr 5107 {copab 5169 dom cdm 5638 Oncon0 6332 Fn wfn 6506 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 supp csupp 8139 finSupp cfsupp 9312 CNF ccnf 9614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-seqom 8416 df-1o 8434 df-map 8801 df-en 8919 df-fin 8922 df-fsupp 9313 df-cnf 9615 |
| This theorem is referenced by: cantnflem1b 9639 cantnflem1d 9641 cantnflem1 9642 |
| Copyright terms: Public domain | W3C validator |