Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cantnflem1a | Structured version Visualization version GIF version |
Description: Lemma for cantnf 9451. (Contributed by Mario Carneiro, 4-Jun-2015.) (Revised by AV, 2-Jul-2019.) |
Ref | Expression |
---|---|
cantnfs.s | ⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
cantnfs.a | ⊢ (𝜑 → 𝐴 ∈ On) |
cantnfs.b | ⊢ (𝜑 → 𝐵 ∈ On) |
oemapval.t | ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} |
oemapval.f | ⊢ (𝜑 → 𝐹 ∈ 𝑆) |
oemapval.g | ⊢ (𝜑 → 𝐺 ∈ 𝑆) |
oemapvali.r | ⊢ (𝜑 → 𝐹𝑇𝐺) |
oemapvali.x | ⊢ 𝑋 = ∪ {𝑐 ∈ 𝐵 ∣ (𝐹‘𝑐) ∈ (𝐺‘𝑐)} |
Ref | Expression |
---|---|
cantnflem1a | ⊢ (𝜑 → 𝑋 ∈ (𝐺 supp ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cantnfs.s | . . . 4 ⊢ 𝑆 = dom (𝐴 CNF 𝐵) | |
2 | cantnfs.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ On) | |
3 | cantnfs.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ On) | |
4 | oemapval.t | . . . 4 ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} | |
5 | oemapval.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑆) | |
6 | oemapval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝑆) | |
7 | oemapvali.r | . . . 4 ⊢ (𝜑 → 𝐹𝑇𝐺) | |
8 | oemapvali.x | . . . 4 ⊢ 𝑋 = ∪ {𝑐 ∈ 𝐵 ∣ (𝐹‘𝑐) ∈ (𝐺‘𝑐)} | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | oemapvali 9442 | . . 3 ⊢ (𝜑 → (𝑋 ∈ 𝐵 ∧ (𝐹‘𝑋) ∈ (𝐺‘𝑋) ∧ ∀𝑤 ∈ 𝐵 (𝑋 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤)))) |
10 | 9 | simp1d 1141 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
11 | 9 | simp2d 1142 | . . 3 ⊢ (𝜑 → (𝐹‘𝑋) ∈ (𝐺‘𝑋)) |
12 | 11 | ne0d 4269 | . 2 ⊢ (𝜑 → (𝐺‘𝑋) ≠ ∅) |
13 | 1, 2, 3 | cantnfs 9424 | . . . . . 6 ⊢ (𝜑 → (𝐺 ∈ 𝑆 ↔ (𝐺:𝐵⟶𝐴 ∧ 𝐺 finSupp ∅))) |
14 | 6, 13 | mpbid 231 | . . . . 5 ⊢ (𝜑 → (𝐺:𝐵⟶𝐴 ∧ 𝐺 finSupp ∅)) |
15 | 14 | simpld 495 | . . . 4 ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) |
16 | 15 | ffnd 6601 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐵) |
17 | 0ex 5231 | . . . 4 ⊢ ∅ ∈ V | |
18 | 17 | a1i 11 | . . 3 ⊢ (𝜑 → ∅ ∈ V) |
19 | elsuppfn 7987 | . . 3 ⊢ ((𝐺 Fn 𝐵 ∧ 𝐵 ∈ On ∧ ∅ ∈ V) → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋 ∈ 𝐵 ∧ (𝐺‘𝑋) ≠ ∅))) | |
20 | 16, 3, 18, 19 | syl3anc 1370 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋 ∈ 𝐵 ∧ (𝐺‘𝑋) ≠ ∅))) |
21 | 10, 12, 20 | mpbir2and 710 | 1 ⊢ (𝜑 → 𝑋 ∈ (𝐺 supp ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ∃wrex 3065 {crab 3068 Vcvv 3432 ∅c0 4256 ∪ cuni 4839 class class class wbr 5074 {copab 5136 dom cdm 5589 Oncon0 6266 Fn wfn 6428 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 supp csupp 7977 finSupp cfsupp 9128 CNF ccnf 9419 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-seqom 8279 df-1o 8297 df-map 8617 df-en 8734 df-fin 8737 df-fsupp 9129 df-cnf 9420 |
This theorem is referenced by: cantnflem1b 9444 cantnflem1d 9446 cantnflem1 9447 |
Copyright terms: Public domain | W3C validator |