Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cantnflem1a | Structured version Visualization version GIF version |
Description: Lemma for cantnf 9381. (Contributed by Mario Carneiro, 4-Jun-2015.) (Revised by AV, 2-Jul-2019.) |
Ref | Expression |
---|---|
cantnfs.s | ⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
cantnfs.a | ⊢ (𝜑 → 𝐴 ∈ On) |
cantnfs.b | ⊢ (𝜑 → 𝐵 ∈ On) |
oemapval.t | ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} |
oemapval.f | ⊢ (𝜑 → 𝐹 ∈ 𝑆) |
oemapval.g | ⊢ (𝜑 → 𝐺 ∈ 𝑆) |
oemapvali.r | ⊢ (𝜑 → 𝐹𝑇𝐺) |
oemapvali.x | ⊢ 𝑋 = ∪ {𝑐 ∈ 𝐵 ∣ (𝐹‘𝑐) ∈ (𝐺‘𝑐)} |
Ref | Expression |
---|---|
cantnflem1a | ⊢ (𝜑 → 𝑋 ∈ (𝐺 supp ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cantnfs.s | . . . 4 ⊢ 𝑆 = dom (𝐴 CNF 𝐵) | |
2 | cantnfs.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ On) | |
3 | cantnfs.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ On) | |
4 | oemapval.t | . . . 4 ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} | |
5 | oemapval.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑆) | |
6 | oemapval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝑆) | |
7 | oemapvali.r | . . . 4 ⊢ (𝜑 → 𝐹𝑇𝐺) | |
8 | oemapvali.x | . . . 4 ⊢ 𝑋 = ∪ {𝑐 ∈ 𝐵 ∣ (𝐹‘𝑐) ∈ (𝐺‘𝑐)} | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | oemapvali 9372 | . . 3 ⊢ (𝜑 → (𝑋 ∈ 𝐵 ∧ (𝐹‘𝑋) ∈ (𝐺‘𝑋) ∧ ∀𝑤 ∈ 𝐵 (𝑋 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤)))) |
10 | 9 | simp1d 1140 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
11 | 9 | simp2d 1141 | . . 3 ⊢ (𝜑 → (𝐹‘𝑋) ∈ (𝐺‘𝑋)) |
12 | 11 | ne0d 4266 | . 2 ⊢ (𝜑 → (𝐺‘𝑋) ≠ ∅) |
13 | 1, 2, 3 | cantnfs 9354 | . . . . . 6 ⊢ (𝜑 → (𝐺 ∈ 𝑆 ↔ (𝐺:𝐵⟶𝐴 ∧ 𝐺 finSupp ∅))) |
14 | 6, 13 | mpbid 231 | . . . . 5 ⊢ (𝜑 → (𝐺:𝐵⟶𝐴 ∧ 𝐺 finSupp ∅)) |
15 | 14 | simpld 494 | . . . 4 ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) |
16 | 15 | ffnd 6585 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐵) |
17 | 0ex 5226 | . . . 4 ⊢ ∅ ∈ V | |
18 | 17 | a1i 11 | . . 3 ⊢ (𝜑 → ∅ ∈ V) |
19 | elsuppfn 7958 | . . 3 ⊢ ((𝐺 Fn 𝐵 ∧ 𝐵 ∈ On ∧ ∅ ∈ V) → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋 ∈ 𝐵 ∧ (𝐺‘𝑋) ≠ ∅))) | |
20 | 16, 3, 18, 19 | syl3anc 1369 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋 ∈ 𝐵 ∧ (𝐺‘𝑋) ≠ ∅))) |
21 | 10, 12, 20 | mpbir2and 709 | 1 ⊢ (𝜑 → 𝑋 ∈ (𝐺 supp ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 {crab 3067 Vcvv 3422 ∅c0 4253 ∪ cuni 4836 class class class wbr 5070 {copab 5132 dom cdm 5580 Oncon0 6251 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 supp csupp 7948 finSupp cfsupp 9058 CNF ccnf 9349 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-seqom 8249 df-1o 8267 df-map 8575 df-en 8692 df-fin 8695 df-fsupp 9059 df-cnf 9350 |
This theorem is referenced by: cantnflem1b 9374 cantnflem1d 9376 cantnflem1 9377 |
Copyright terms: Public domain | W3C validator |