Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cantnflem1a | Structured version Visualization version GIF version |
Description: Lemma for cantnf 9542. (Contributed by Mario Carneiro, 4-Jun-2015.) (Revised by AV, 2-Jul-2019.) |
Ref | Expression |
---|---|
cantnfs.s | ⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
cantnfs.a | ⊢ (𝜑 → 𝐴 ∈ On) |
cantnfs.b | ⊢ (𝜑 → 𝐵 ∈ On) |
oemapval.t | ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} |
oemapval.f | ⊢ (𝜑 → 𝐹 ∈ 𝑆) |
oemapval.g | ⊢ (𝜑 → 𝐺 ∈ 𝑆) |
oemapvali.r | ⊢ (𝜑 → 𝐹𝑇𝐺) |
oemapvali.x | ⊢ 𝑋 = ∪ {𝑐 ∈ 𝐵 ∣ (𝐹‘𝑐) ∈ (𝐺‘𝑐)} |
Ref | Expression |
---|---|
cantnflem1a | ⊢ (𝜑 → 𝑋 ∈ (𝐺 supp ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cantnfs.s | . . . 4 ⊢ 𝑆 = dom (𝐴 CNF 𝐵) | |
2 | cantnfs.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ On) | |
3 | cantnfs.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ On) | |
4 | oemapval.t | . . . 4 ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} | |
5 | oemapval.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑆) | |
6 | oemapval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝑆) | |
7 | oemapvali.r | . . . 4 ⊢ (𝜑 → 𝐹𝑇𝐺) | |
8 | oemapvali.x | . . . 4 ⊢ 𝑋 = ∪ {𝑐 ∈ 𝐵 ∣ (𝐹‘𝑐) ∈ (𝐺‘𝑐)} | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | oemapvali 9533 | . . 3 ⊢ (𝜑 → (𝑋 ∈ 𝐵 ∧ (𝐹‘𝑋) ∈ (𝐺‘𝑋) ∧ ∀𝑤 ∈ 𝐵 (𝑋 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤)))) |
10 | 9 | simp1d 1141 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
11 | 9 | simp2d 1142 | . . 3 ⊢ (𝜑 → (𝐹‘𝑋) ∈ (𝐺‘𝑋)) |
12 | 11 | ne0d 4281 | . 2 ⊢ (𝜑 → (𝐺‘𝑋) ≠ ∅) |
13 | 1, 2, 3 | cantnfs 9515 | . . . . . 6 ⊢ (𝜑 → (𝐺 ∈ 𝑆 ↔ (𝐺:𝐵⟶𝐴 ∧ 𝐺 finSupp ∅))) |
14 | 6, 13 | mpbid 231 | . . . . 5 ⊢ (𝜑 → (𝐺:𝐵⟶𝐴 ∧ 𝐺 finSupp ∅)) |
15 | 14 | simpld 495 | . . . 4 ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) |
16 | 15 | ffnd 6646 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐵) |
17 | 0ex 5248 | . . . 4 ⊢ ∅ ∈ V | |
18 | 17 | a1i 11 | . . 3 ⊢ (𝜑 → ∅ ∈ V) |
19 | elsuppfn 8049 | . . 3 ⊢ ((𝐺 Fn 𝐵 ∧ 𝐵 ∈ On ∧ ∅ ∈ V) → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋 ∈ 𝐵 ∧ (𝐺‘𝑋) ≠ ∅))) | |
20 | 16, 3, 18, 19 | syl3anc 1370 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋 ∈ 𝐵 ∧ (𝐺‘𝑋) ≠ ∅))) |
21 | 10, 12, 20 | mpbir2and 710 | 1 ⊢ (𝜑 → 𝑋 ∈ (𝐺 supp ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 {crab 3403 Vcvv 3441 ∅c0 4268 ∪ cuni 4851 class class class wbr 5089 {copab 5151 dom cdm 5614 Oncon0 6296 Fn wfn 6468 ⟶wf 6469 ‘cfv 6473 (class class class)co 7329 supp csupp 8039 finSupp cfsupp 9218 CNF ccnf 9510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-supp 8040 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-seqom 8341 df-1o 8359 df-map 8680 df-en 8797 df-fin 8800 df-fsupp 9219 df-cnf 9511 |
This theorem is referenced by: cantnflem1b 9535 cantnflem1d 9537 cantnflem1 9538 |
Copyright terms: Public domain | W3C validator |