![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcmfunnnd | Structured version Visualization version GIF version |
Description: Useful equation to calculate the least common multiple of 1 to n. (Contributed by metakunt, 29-Apr-2024.) |
Ref | Expression |
---|---|
lcmfunnnd.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
Ref | Expression |
---|---|
lcmfunnnd | ⊢ (𝜑 → (lcm‘(1...𝑁)) = ((lcm‘(1...(𝑁 − 1))) lcm 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcmfunnnd.1 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
2 | 1 | nncnd 12309 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
3 | 1cnd 11285 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ ℂ) | |
4 | 2, 3 | npcand 11651 | . . . . . 6 ⊢ (𝜑 → ((𝑁 − 1) + 1) = 𝑁) |
5 | 4 | oveq2d 7464 | . . . . 5 ⊢ (𝜑 → (1...((𝑁 − 1) + 1)) = (1...𝑁)) |
6 | nnm1nn0 12594 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) | |
7 | 1, 6 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝑁 − 1) ∈ ℕ0) |
8 | nn0uz 12945 | . . . . . . . . 9 ⊢ ℕ0 = (ℤ≥‘0) | |
9 | 8 | eleq2i 2836 | . . . . . . . 8 ⊢ ((𝑁 − 1) ∈ ℕ0 ↔ (𝑁 − 1) ∈ (ℤ≥‘0)) |
10 | 7, 9 | sylib 218 | . . . . . . 7 ⊢ (𝜑 → (𝑁 − 1) ∈ (ℤ≥‘0)) |
11 | 1m1e0 12365 | . . . . . . . . . 10 ⊢ (1 − 1) = 0 | |
12 | 11 | fveq2i 6923 | . . . . . . . . 9 ⊢ (ℤ≥‘(1 − 1)) = (ℤ≥‘0) |
13 | 12 | eleq2i 2836 | . . . . . . . 8 ⊢ ((𝑁 − 1) ∈ (ℤ≥‘(1 − 1)) ↔ (𝑁 − 1) ∈ (ℤ≥‘0)) |
14 | 13 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ((𝑁 − 1) ∈ (ℤ≥‘(1 − 1)) ↔ (𝑁 − 1) ∈ (ℤ≥‘0))) |
15 | 10, 14 | mpbird 257 | . . . . . 6 ⊢ (𝜑 → (𝑁 − 1) ∈ (ℤ≥‘(1 − 1))) |
16 | 1z 12673 | . . . . . . 7 ⊢ 1 ∈ ℤ | |
17 | fzsuc2 13642 | . . . . . . 7 ⊢ ((1 ∈ ℤ ∧ (𝑁 − 1) ∈ (ℤ≥‘(1 − 1))) → (1...((𝑁 − 1) + 1)) = ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)})) | |
18 | 16, 17 | mpan 689 | . . . . . 6 ⊢ ((𝑁 − 1) ∈ (ℤ≥‘(1 − 1)) → (1...((𝑁 − 1) + 1)) = ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)})) |
19 | 15, 18 | syl 17 | . . . . 5 ⊢ (𝜑 → (1...((𝑁 − 1) + 1)) = ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)})) |
20 | 5, 19 | eqtr3d 2782 | . . . 4 ⊢ (𝜑 → (1...𝑁) = ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)})) |
21 | 4 | sneqd 4660 | . . . . 5 ⊢ (𝜑 → {((𝑁 − 1) + 1)} = {𝑁}) |
22 | 21 | uneq2d 4191 | . . . 4 ⊢ (𝜑 → ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}) = ((1...(𝑁 − 1)) ∪ {𝑁})) |
23 | 20, 22 | eqtrd 2780 | . . 3 ⊢ (𝜑 → (1...𝑁) = ((1...(𝑁 − 1)) ∪ {𝑁})) |
24 | 23 | fveq2d 6924 | . 2 ⊢ (𝜑 → (lcm‘(1...𝑁)) = (lcm‘((1...(𝑁 − 1)) ∪ {𝑁}))) |
25 | fzssz 13586 | . . . . 5 ⊢ (1...(𝑁 − 1)) ⊆ ℤ | |
26 | 25 | a1i 11 | . . . 4 ⊢ (𝜑 → (1...(𝑁 − 1)) ⊆ ℤ) |
27 | fzfi 14023 | . . . . 5 ⊢ (1...(𝑁 − 1)) ∈ Fin | |
28 | 27 | a1i 11 | . . . 4 ⊢ (𝜑 → (1...(𝑁 − 1)) ∈ Fin) |
29 | nnz 12660 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
30 | 1, 29 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
31 | 26, 28, 30 | 3jca 1128 | . . 3 ⊢ (𝜑 → ((1...(𝑁 − 1)) ⊆ ℤ ∧ (1...(𝑁 − 1)) ∈ Fin ∧ 𝑁 ∈ ℤ)) |
32 | lcmfunsn 16691 | . . 3 ⊢ (((1...(𝑁 − 1)) ⊆ ℤ ∧ (1...(𝑁 − 1)) ∈ Fin ∧ 𝑁 ∈ ℤ) → (lcm‘((1...(𝑁 − 1)) ∪ {𝑁})) = ((lcm‘(1...(𝑁 − 1))) lcm 𝑁)) | |
33 | 31, 32 | syl 17 | . 2 ⊢ (𝜑 → (lcm‘((1...(𝑁 − 1)) ∪ {𝑁})) = ((lcm‘(1...(𝑁 − 1))) lcm 𝑁)) |
34 | 24, 33 | eqtrd 2780 | 1 ⊢ (𝜑 → (lcm‘(1...𝑁)) = ((lcm‘(1...(𝑁 − 1))) lcm 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∪ cun 3974 ⊆ wss 3976 {csn 4648 ‘cfv 6573 (class class class)co 7448 Fincfn 9003 0cc0 11184 1c1 11185 + caddc 11187 − cmin 11520 ℕcn 12293 ℕ0cn0 12553 ℤcz 12639 ℤ≥cuz 12903 ...cfz 13567 lcm clcm 16635 lcmclcmf 16636 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-fz 13568 df-fzo 13712 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-prod 15952 df-dvds 16303 df-gcd 16541 df-lcm 16637 df-lcmf 16638 |
This theorem is referenced by: lcm1un 41970 lcm2un 41971 lcm3un 41972 lcm4un 41973 lcm5un 41974 lcm6un 41975 lcm7un 41976 lcm8un 41977 lcmineqlem19 42004 lcmineqlem22 42007 |
Copyright terms: Public domain | W3C validator |