| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcmfunnnd | Structured version Visualization version GIF version | ||
| Description: Useful equation to calculate the least common multiple of 1 to n. (Contributed by metakunt, 29-Apr-2024.) |
| Ref | Expression |
|---|---|
| lcmfunnnd.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| Ref | Expression |
|---|---|
| lcmfunnnd | ⊢ (𝜑 → (lcm‘(1...𝑁)) = ((lcm‘(1...(𝑁 − 1))) lcm 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcmfunnnd.1 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 2 | 1 | nncnd 12144 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 3 | 1cnd 11110 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 4 | 2, 3 | npcand 11479 | . . . . . 6 ⊢ (𝜑 → ((𝑁 − 1) + 1) = 𝑁) |
| 5 | 4 | oveq2d 7365 | . . . . 5 ⊢ (𝜑 → (1...((𝑁 − 1) + 1)) = (1...𝑁)) |
| 6 | nnm1nn0 12425 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) | |
| 7 | 1, 6 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝑁 − 1) ∈ ℕ0) |
| 8 | nn0uz 12777 | . . . . . . . . 9 ⊢ ℕ0 = (ℤ≥‘0) | |
| 9 | 8 | eleq2i 2820 | . . . . . . . 8 ⊢ ((𝑁 − 1) ∈ ℕ0 ↔ (𝑁 − 1) ∈ (ℤ≥‘0)) |
| 10 | 7, 9 | sylib 218 | . . . . . . 7 ⊢ (𝜑 → (𝑁 − 1) ∈ (ℤ≥‘0)) |
| 11 | 1m1e0 12200 | . . . . . . . . . 10 ⊢ (1 − 1) = 0 | |
| 12 | 11 | fveq2i 6825 | . . . . . . . . 9 ⊢ (ℤ≥‘(1 − 1)) = (ℤ≥‘0) |
| 13 | 12 | eleq2i 2820 | . . . . . . . 8 ⊢ ((𝑁 − 1) ∈ (ℤ≥‘(1 − 1)) ↔ (𝑁 − 1) ∈ (ℤ≥‘0)) |
| 14 | 13 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ((𝑁 − 1) ∈ (ℤ≥‘(1 − 1)) ↔ (𝑁 − 1) ∈ (ℤ≥‘0))) |
| 15 | 10, 14 | mpbird 257 | . . . . . 6 ⊢ (𝜑 → (𝑁 − 1) ∈ (ℤ≥‘(1 − 1))) |
| 16 | 1z 12505 | . . . . . . 7 ⊢ 1 ∈ ℤ | |
| 17 | fzsuc2 13485 | . . . . . . 7 ⊢ ((1 ∈ ℤ ∧ (𝑁 − 1) ∈ (ℤ≥‘(1 − 1))) → (1...((𝑁 − 1) + 1)) = ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)})) | |
| 18 | 16, 17 | mpan 690 | . . . . . 6 ⊢ ((𝑁 − 1) ∈ (ℤ≥‘(1 − 1)) → (1...((𝑁 − 1) + 1)) = ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)})) |
| 19 | 15, 18 | syl 17 | . . . . 5 ⊢ (𝜑 → (1...((𝑁 − 1) + 1)) = ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)})) |
| 20 | 5, 19 | eqtr3d 2766 | . . . 4 ⊢ (𝜑 → (1...𝑁) = ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)})) |
| 21 | 4 | sneqd 4589 | . . . . 5 ⊢ (𝜑 → {((𝑁 − 1) + 1)} = {𝑁}) |
| 22 | 21 | uneq2d 4119 | . . . 4 ⊢ (𝜑 → ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}) = ((1...(𝑁 − 1)) ∪ {𝑁})) |
| 23 | 20, 22 | eqtrd 2764 | . . 3 ⊢ (𝜑 → (1...𝑁) = ((1...(𝑁 − 1)) ∪ {𝑁})) |
| 24 | 23 | fveq2d 6826 | . 2 ⊢ (𝜑 → (lcm‘(1...𝑁)) = (lcm‘((1...(𝑁 − 1)) ∪ {𝑁}))) |
| 25 | fzssz 13429 | . . . . 5 ⊢ (1...(𝑁 − 1)) ⊆ ℤ | |
| 26 | 25 | a1i 11 | . . . 4 ⊢ (𝜑 → (1...(𝑁 − 1)) ⊆ ℤ) |
| 27 | fzfi 13879 | . . . . 5 ⊢ (1...(𝑁 − 1)) ∈ Fin | |
| 28 | 27 | a1i 11 | . . . 4 ⊢ (𝜑 → (1...(𝑁 − 1)) ∈ Fin) |
| 29 | nnz 12492 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
| 30 | 1, 29 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 31 | 26, 28, 30 | 3jca 1128 | . . 3 ⊢ (𝜑 → ((1...(𝑁 − 1)) ⊆ ℤ ∧ (1...(𝑁 − 1)) ∈ Fin ∧ 𝑁 ∈ ℤ)) |
| 32 | lcmfunsn 16555 | . . 3 ⊢ (((1...(𝑁 − 1)) ⊆ ℤ ∧ (1...(𝑁 − 1)) ∈ Fin ∧ 𝑁 ∈ ℤ) → (lcm‘((1...(𝑁 − 1)) ∪ {𝑁})) = ((lcm‘(1...(𝑁 − 1))) lcm 𝑁)) | |
| 33 | 31, 32 | syl 17 | . 2 ⊢ (𝜑 → (lcm‘((1...(𝑁 − 1)) ∪ {𝑁})) = ((lcm‘(1...(𝑁 − 1))) lcm 𝑁)) |
| 34 | 24, 33 | eqtrd 2764 | 1 ⊢ (𝜑 → (lcm‘(1...𝑁)) = ((lcm‘(1...(𝑁 − 1))) lcm 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∪ cun 3901 ⊆ wss 3903 {csn 4577 ‘cfv 6482 (class class class)co 7349 Fincfn 8872 0cc0 11009 1c1 11010 + caddc 11012 − cmin 11347 ℕcn 12128 ℕ0cn0 12384 ℤcz 12471 ℤ≥cuz 12735 ...cfz 13410 lcm clcm 16499 lcmclcmf 16500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-fz 13411 df-fzo 13558 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-prod 15811 df-dvds 16164 df-gcd 16406 df-lcm 16501 df-lcmf 16502 |
| This theorem is referenced by: lcm1un 42006 lcm2un 42007 lcm3un 42008 lcm4un 42009 lcm5un 42010 lcm6un 42011 lcm7un 42012 lcm8un 42013 lcmineqlem19 42040 lcmineqlem22 42043 |
| Copyright terms: Public domain | W3C validator |