Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmfunnnd Structured version   Visualization version   GIF version

Theorem lcmfunnnd 41993
Description: Useful equation to calculate the least common multiple of 1 to n. (Contributed by metakunt, 29-Apr-2024.)
Hypothesis
Ref Expression
lcmfunnnd.1 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
lcmfunnnd (𝜑 → (lcm‘(1...𝑁)) = ((lcm‘(1...(𝑁 − 1))) lcm 𝑁))

Proof of Theorem lcmfunnnd
StepHypRef Expression
1 lcmfunnnd.1 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
21nncnd 12178 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
3 1cnd 11145 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
42, 3npcand 11513 . . . . . 6 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
54oveq2d 7385 . . . . 5 (𝜑 → (1...((𝑁 − 1) + 1)) = (1...𝑁))
6 nnm1nn0 12459 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
71, 6syl 17 . . . . . . . 8 (𝜑 → (𝑁 − 1) ∈ ℕ0)
8 nn0uz 12811 . . . . . . . . 9 0 = (ℤ‘0)
98eleq2i 2820 . . . . . . . 8 ((𝑁 − 1) ∈ ℕ0 ↔ (𝑁 − 1) ∈ (ℤ‘0))
107, 9sylib 218 . . . . . . 7 (𝜑 → (𝑁 − 1) ∈ (ℤ‘0))
11 1m1e0 12234 . . . . . . . . . 10 (1 − 1) = 0
1211fveq2i 6843 . . . . . . . . 9 (ℤ‘(1 − 1)) = (ℤ‘0)
1312eleq2i 2820 . . . . . . . 8 ((𝑁 − 1) ∈ (ℤ‘(1 − 1)) ↔ (𝑁 − 1) ∈ (ℤ‘0))
1413a1i 11 . . . . . . 7 (𝜑 → ((𝑁 − 1) ∈ (ℤ‘(1 − 1)) ↔ (𝑁 − 1) ∈ (ℤ‘0)))
1510, 14mpbird 257 . . . . . 6 (𝜑 → (𝑁 − 1) ∈ (ℤ‘(1 − 1)))
16 1z 12539 . . . . . . 7 1 ∈ ℤ
17 fzsuc2 13519 . . . . . . 7 ((1 ∈ ℤ ∧ (𝑁 − 1) ∈ (ℤ‘(1 − 1))) → (1...((𝑁 − 1) + 1)) = ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}))
1816, 17mpan 690 . . . . . 6 ((𝑁 − 1) ∈ (ℤ‘(1 − 1)) → (1...((𝑁 − 1) + 1)) = ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}))
1915, 18syl 17 . . . . 5 (𝜑 → (1...((𝑁 − 1) + 1)) = ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}))
205, 19eqtr3d 2766 . . . 4 (𝜑 → (1...𝑁) = ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}))
214sneqd 4597 . . . . 5 (𝜑 → {((𝑁 − 1) + 1)} = {𝑁})
2221uneq2d 4127 . . . 4 (𝜑 → ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}) = ((1...(𝑁 − 1)) ∪ {𝑁}))
2320, 22eqtrd 2764 . . 3 (𝜑 → (1...𝑁) = ((1...(𝑁 − 1)) ∪ {𝑁}))
2423fveq2d 6844 . 2 (𝜑 → (lcm‘(1...𝑁)) = (lcm‘((1...(𝑁 − 1)) ∪ {𝑁})))
25 fzssz 13463 . . . . 5 (1...(𝑁 − 1)) ⊆ ℤ
2625a1i 11 . . . 4 (𝜑 → (1...(𝑁 − 1)) ⊆ ℤ)
27 fzfi 13913 . . . . 5 (1...(𝑁 − 1)) ∈ Fin
2827a1i 11 . . . 4 (𝜑 → (1...(𝑁 − 1)) ∈ Fin)
29 nnz 12526 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
301, 29syl 17 . . . 4 (𝜑𝑁 ∈ ℤ)
3126, 28, 303jca 1128 . . 3 (𝜑 → ((1...(𝑁 − 1)) ⊆ ℤ ∧ (1...(𝑁 − 1)) ∈ Fin ∧ 𝑁 ∈ ℤ))
32 lcmfunsn 16590 . . 3 (((1...(𝑁 − 1)) ⊆ ℤ ∧ (1...(𝑁 − 1)) ∈ Fin ∧ 𝑁 ∈ ℤ) → (lcm‘((1...(𝑁 − 1)) ∪ {𝑁})) = ((lcm‘(1...(𝑁 − 1))) lcm 𝑁))
3331, 32syl 17 . 2 (𝜑 → (lcm‘((1...(𝑁 − 1)) ∪ {𝑁})) = ((lcm‘(1...(𝑁 − 1))) lcm 𝑁))
3424, 33eqtrd 2764 1 (𝜑 → (lcm‘(1...𝑁)) = ((lcm‘(1...(𝑁 − 1))) lcm 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  cun 3909  wss 3911  {csn 4585  cfv 6499  (class class class)co 7369  Fincfn 8895  0cc0 11044  1c1 11045   + caddc 11047  cmin 11381  cn 12162  0cn0 12418  cz 12505  cuz 12769  ...cfz 13444   lcm clcm 16534  lcmclcmf 16535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-prod 15846  df-dvds 16199  df-gcd 16441  df-lcm 16536  df-lcmf 16537
This theorem is referenced by:  lcm1un  41994  lcm2un  41995  lcm3un  41996  lcm4un  41997  lcm5un  41998  lcm6un  41999  lcm7un  42000  lcm8un  42001  lcmineqlem19  42028  lcmineqlem22  42031
  Copyright terms: Public domain W3C validator