![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcmfunnnd | Structured version Visualization version GIF version |
Description: Useful equation to calculate the least common multiple of 1 to n. (Contributed by metakunt, 29-Apr-2024.) |
Ref | Expression |
---|---|
lcmfunnnd.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
Ref | Expression |
---|---|
lcmfunnnd | ⊢ (𝜑 → (lcm‘(1...𝑁)) = ((lcm‘(1...(𝑁 − 1))) lcm 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcmfunnnd.1 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
2 | 1 | nncnd 12224 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
3 | 1cnd 11205 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ ℂ) | |
4 | 2, 3 | npcand 11571 | . . . . . 6 ⊢ (𝜑 → ((𝑁 − 1) + 1) = 𝑁) |
5 | 4 | oveq2d 7421 | . . . . 5 ⊢ (𝜑 → (1...((𝑁 − 1) + 1)) = (1...𝑁)) |
6 | nnm1nn0 12509 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) | |
7 | 1, 6 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝑁 − 1) ∈ ℕ0) |
8 | nn0uz 12860 | . . . . . . . . 9 ⊢ ℕ0 = (ℤ≥‘0) | |
9 | 8 | eleq2i 2825 | . . . . . . . 8 ⊢ ((𝑁 − 1) ∈ ℕ0 ↔ (𝑁 − 1) ∈ (ℤ≥‘0)) |
10 | 7, 9 | sylib 217 | . . . . . . 7 ⊢ (𝜑 → (𝑁 − 1) ∈ (ℤ≥‘0)) |
11 | 1m1e0 12280 | . . . . . . . . . 10 ⊢ (1 − 1) = 0 | |
12 | 11 | fveq2i 6891 | . . . . . . . . 9 ⊢ (ℤ≥‘(1 − 1)) = (ℤ≥‘0) |
13 | 12 | eleq2i 2825 | . . . . . . . 8 ⊢ ((𝑁 − 1) ∈ (ℤ≥‘(1 − 1)) ↔ (𝑁 − 1) ∈ (ℤ≥‘0)) |
14 | 13 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ((𝑁 − 1) ∈ (ℤ≥‘(1 − 1)) ↔ (𝑁 − 1) ∈ (ℤ≥‘0))) |
15 | 10, 14 | mpbird 256 | . . . . . 6 ⊢ (𝜑 → (𝑁 − 1) ∈ (ℤ≥‘(1 − 1))) |
16 | 1z 12588 | . . . . . . 7 ⊢ 1 ∈ ℤ | |
17 | fzsuc2 13555 | . . . . . . 7 ⊢ ((1 ∈ ℤ ∧ (𝑁 − 1) ∈ (ℤ≥‘(1 − 1))) → (1...((𝑁 − 1) + 1)) = ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)})) | |
18 | 16, 17 | mpan 688 | . . . . . 6 ⊢ ((𝑁 − 1) ∈ (ℤ≥‘(1 − 1)) → (1...((𝑁 − 1) + 1)) = ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)})) |
19 | 15, 18 | syl 17 | . . . . 5 ⊢ (𝜑 → (1...((𝑁 − 1) + 1)) = ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)})) |
20 | 5, 19 | eqtr3d 2774 | . . . 4 ⊢ (𝜑 → (1...𝑁) = ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)})) |
21 | 4 | sneqd 4639 | . . . . 5 ⊢ (𝜑 → {((𝑁 − 1) + 1)} = {𝑁}) |
22 | 21 | uneq2d 4162 | . . . 4 ⊢ (𝜑 → ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}) = ((1...(𝑁 − 1)) ∪ {𝑁})) |
23 | 20, 22 | eqtrd 2772 | . . 3 ⊢ (𝜑 → (1...𝑁) = ((1...(𝑁 − 1)) ∪ {𝑁})) |
24 | 23 | fveq2d 6892 | . 2 ⊢ (𝜑 → (lcm‘(1...𝑁)) = (lcm‘((1...(𝑁 − 1)) ∪ {𝑁}))) |
25 | fzssz 13499 | . . . . 5 ⊢ (1...(𝑁 − 1)) ⊆ ℤ | |
26 | 25 | a1i 11 | . . . 4 ⊢ (𝜑 → (1...(𝑁 − 1)) ⊆ ℤ) |
27 | fzfi 13933 | . . . . 5 ⊢ (1...(𝑁 − 1)) ∈ Fin | |
28 | 27 | a1i 11 | . . . 4 ⊢ (𝜑 → (1...(𝑁 − 1)) ∈ Fin) |
29 | nnz 12575 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
30 | 1, 29 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
31 | 26, 28, 30 | 3jca 1128 | . . 3 ⊢ (𝜑 → ((1...(𝑁 − 1)) ⊆ ℤ ∧ (1...(𝑁 − 1)) ∈ Fin ∧ 𝑁 ∈ ℤ)) |
32 | lcmfunsn 16577 | . . 3 ⊢ (((1...(𝑁 − 1)) ⊆ ℤ ∧ (1...(𝑁 − 1)) ∈ Fin ∧ 𝑁 ∈ ℤ) → (lcm‘((1...(𝑁 − 1)) ∪ {𝑁})) = ((lcm‘(1...(𝑁 − 1))) lcm 𝑁)) | |
33 | 31, 32 | syl 17 | . 2 ⊢ (𝜑 → (lcm‘((1...(𝑁 − 1)) ∪ {𝑁})) = ((lcm‘(1...(𝑁 − 1))) lcm 𝑁)) |
34 | 24, 33 | eqtrd 2772 | 1 ⊢ (𝜑 → (lcm‘(1...𝑁)) = ((lcm‘(1...(𝑁 − 1))) lcm 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∪ cun 3945 ⊆ wss 3947 {csn 4627 ‘cfv 6540 (class class class)co 7405 Fincfn 8935 0cc0 11106 1c1 11107 + caddc 11109 − cmin 11440 ℕcn 12208 ℕ0cn0 12468 ℤcz 12554 ℤ≥cuz 12818 ...cfz 13480 lcm clcm 16521 lcmclcmf 16522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-z 12555 df-uz 12819 df-rp 12971 df-fz 13481 df-fzo 13624 df-fl 13753 df-mod 13831 df-seq 13963 df-exp 14024 df-hash 14287 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-clim 15428 df-prod 15846 df-dvds 16194 df-gcd 16432 df-lcm 16523 df-lcmf 16524 |
This theorem is referenced by: lcm1un 40866 lcm2un 40867 lcm3un 40868 lcm4un 40869 lcm5un 40870 lcm6un 40871 lcm7un 40872 lcm8un 40873 lcmineqlem19 40900 lcmineqlem22 40903 |
Copyright terms: Public domain | W3C validator |