Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmfunnnd Structured version   Visualization version   GIF version

Theorem lcmfunnnd 41487
Description: Useful equation to calculate the least common multiple of 1 to n. (Contributed by metakunt, 29-Apr-2024.)
Hypothesis
Ref Expression
lcmfunnnd.1 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
lcmfunnnd (𝜑 → (lcm‘(1...𝑁)) = ((lcm‘(1...(𝑁 − 1))) lcm 𝑁))

Proof of Theorem lcmfunnnd
StepHypRef Expression
1 lcmfunnnd.1 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
21nncnd 12264 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
3 1cnd 11245 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
42, 3npcand 11611 . . . . . 6 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
54oveq2d 7440 . . . . 5 (𝜑 → (1...((𝑁 − 1) + 1)) = (1...𝑁))
6 nnm1nn0 12549 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
71, 6syl 17 . . . . . . . 8 (𝜑 → (𝑁 − 1) ∈ ℕ0)
8 nn0uz 12900 . . . . . . . . 9 0 = (ℤ‘0)
98eleq2i 2820 . . . . . . . 8 ((𝑁 − 1) ∈ ℕ0 ↔ (𝑁 − 1) ∈ (ℤ‘0))
107, 9sylib 217 . . . . . . 7 (𝜑 → (𝑁 − 1) ∈ (ℤ‘0))
11 1m1e0 12320 . . . . . . . . . 10 (1 − 1) = 0
1211fveq2i 6903 . . . . . . . . 9 (ℤ‘(1 − 1)) = (ℤ‘0)
1312eleq2i 2820 . . . . . . . 8 ((𝑁 − 1) ∈ (ℤ‘(1 − 1)) ↔ (𝑁 − 1) ∈ (ℤ‘0))
1413a1i 11 . . . . . . 7 (𝜑 → ((𝑁 − 1) ∈ (ℤ‘(1 − 1)) ↔ (𝑁 − 1) ∈ (ℤ‘0)))
1510, 14mpbird 256 . . . . . 6 (𝜑 → (𝑁 − 1) ∈ (ℤ‘(1 − 1)))
16 1z 12628 . . . . . . 7 1 ∈ ℤ
17 fzsuc2 13597 . . . . . . 7 ((1 ∈ ℤ ∧ (𝑁 − 1) ∈ (ℤ‘(1 − 1))) → (1...((𝑁 − 1) + 1)) = ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}))
1816, 17mpan 688 . . . . . 6 ((𝑁 − 1) ∈ (ℤ‘(1 − 1)) → (1...((𝑁 − 1) + 1)) = ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}))
1915, 18syl 17 . . . . 5 (𝜑 → (1...((𝑁 − 1) + 1)) = ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}))
205, 19eqtr3d 2769 . . . 4 (𝜑 → (1...𝑁) = ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}))
214sneqd 4642 . . . . 5 (𝜑 → {((𝑁 − 1) + 1)} = {𝑁})
2221uneq2d 4162 . . . 4 (𝜑 → ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}) = ((1...(𝑁 − 1)) ∪ {𝑁}))
2320, 22eqtrd 2767 . . 3 (𝜑 → (1...𝑁) = ((1...(𝑁 − 1)) ∪ {𝑁}))
2423fveq2d 6904 . 2 (𝜑 → (lcm‘(1...𝑁)) = (lcm‘((1...(𝑁 − 1)) ∪ {𝑁})))
25 fzssz 13541 . . . . 5 (1...(𝑁 − 1)) ⊆ ℤ
2625a1i 11 . . . 4 (𝜑 → (1...(𝑁 − 1)) ⊆ ℤ)
27 fzfi 13975 . . . . 5 (1...(𝑁 − 1)) ∈ Fin
2827a1i 11 . . . 4 (𝜑 → (1...(𝑁 − 1)) ∈ Fin)
29 nnz 12615 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
301, 29syl 17 . . . 4 (𝜑𝑁 ∈ ℤ)
3126, 28, 303jca 1125 . . 3 (𝜑 → ((1...(𝑁 − 1)) ⊆ ℤ ∧ (1...(𝑁 − 1)) ∈ Fin ∧ 𝑁 ∈ ℤ))
32 lcmfunsn 16620 . . 3 (((1...(𝑁 − 1)) ⊆ ℤ ∧ (1...(𝑁 − 1)) ∈ Fin ∧ 𝑁 ∈ ℤ) → (lcm‘((1...(𝑁 − 1)) ∪ {𝑁})) = ((lcm‘(1...(𝑁 − 1))) lcm 𝑁))
3331, 32syl 17 . 2 (𝜑 → (lcm‘((1...(𝑁 − 1)) ∪ {𝑁})) = ((lcm‘(1...(𝑁 − 1))) lcm 𝑁))
3424, 33eqtrd 2767 1 (𝜑 → (lcm‘(1...𝑁)) = ((lcm‘(1...(𝑁 − 1))) lcm 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1084   = wceq 1533  wcel 2098  cun 3945  wss 3947  {csn 4630  cfv 6551  (class class class)co 7424  Fincfn 8968  0cc0 11144  1c1 11145   + caddc 11147  cmin 11480  cn 12248  0cn0 12508  cz 12594  cuz 12858  ...cfz 13522   lcm clcm 16564  lcmclcmf 16565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-inf2 9670  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221  ax-pre-sup 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-int 4952  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-se 5636  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-isom 6560  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-1st 7997  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-1o 8491  df-er 8729  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-sup 9471  df-inf 9472  df-oi 9539  df-card 9968  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-div 11908  df-nn 12249  df-2 12311  df-3 12312  df-n0 12509  df-z 12595  df-uz 12859  df-rp 13013  df-fz 13523  df-fzo 13666  df-fl 13795  df-mod 13873  df-seq 14005  df-exp 14065  df-hash 14328  df-cj 15084  df-re 15085  df-im 15086  df-sqrt 15220  df-abs 15221  df-clim 15470  df-prod 15888  df-dvds 16237  df-gcd 16475  df-lcm 16566  df-lcmf 16567
This theorem is referenced by:  lcm1un  41488  lcm2un  41489  lcm3un  41490  lcm4un  41491  lcm5un  41492  lcm6un  41493  lcm7un  41494  lcm8un  41495  lcmineqlem19  41522  lcmineqlem22  41525
  Copyright terms: Public domain W3C validator