Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmfunnnd Structured version   Visualization version   GIF version

Theorem lcmfunnnd 42030
Description: Useful equation to calculate the least common multiple of 1 to n. (Contributed by metakunt, 29-Apr-2024.)
Hypothesis
Ref Expression
lcmfunnnd.1 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
lcmfunnnd (𝜑 → (lcm‘(1...𝑁)) = ((lcm‘(1...(𝑁 − 1))) lcm 𝑁))

Proof of Theorem lcmfunnnd
StepHypRef Expression
1 lcmfunnnd.1 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
21nncnd 12261 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
3 1cnd 11235 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
42, 3npcand 11603 . . . . . 6 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
54oveq2d 7426 . . . . 5 (𝜑 → (1...((𝑁 − 1) + 1)) = (1...𝑁))
6 nnm1nn0 12547 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
71, 6syl 17 . . . . . . . 8 (𝜑 → (𝑁 − 1) ∈ ℕ0)
8 nn0uz 12899 . . . . . . . . 9 0 = (ℤ‘0)
98eleq2i 2827 . . . . . . . 8 ((𝑁 − 1) ∈ ℕ0 ↔ (𝑁 − 1) ∈ (ℤ‘0))
107, 9sylib 218 . . . . . . 7 (𝜑 → (𝑁 − 1) ∈ (ℤ‘0))
11 1m1e0 12317 . . . . . . . . . 10 (1 − 1) = 0
1211fveq2i 6884 . . . . . . . . 9 (ℤ‘(1 − 1)) = (ℤ‘0)
1312eleq2i 2827 . . . . . . . 8 ((𝑁 − 1) ∈ (ℤ‘(1 − 1)) ↔ (𝑁 − 1) ∈ (ℤ‘0))
1413a1i 11 . . . . . . 7 (𝜑 → ((𝑁 − 1) ∈ (ℤ‘(1 − 1)) ↔ (𝑁 − 1) ∈ (ℤ‘0)))
1510, 14mpbird 257 . . . . . 6 (𝜑 → (𝑁 − 1) ∈ (ℤ‘(1 − 1)))
16 1z 12627 . . . . . . 7 1 ∈ ℤ
17 fzsuc2 13604 . . . . . . 7 ((1 ∈ ℤ ∧ (𝑁 − 1) ∈ (ℤ‘(1 − 1))) → (1...((𝑁 − 1) + 1)) = ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}))
1816, 17mpan 690 . . . . . 6 ((𝑁 − 1) ∈ (ℤ‘(1 − 1)) → (1...((𝑁 − 1) + 1)) = ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}))
1915, 18syl 17 . . . . 5 (𝜑 → (1...((𝑁 − 1) + 1)) = ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}))
205, 19eqtr3d 2773 . . . 4 (𝜑 → (1...𝑁) = ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}))
214sneqd 4618 . . . . 5 (𝜑 → {((𝑁 − 1) + 1)} = {𝑁})
2221uneq2d 4148 . . . 4 (𝜑 → ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}) = ((1...(𝑁 − 1)) ∪ {𝑁}))
2320, 22eqtrd 2771 . . 3 (𝜑 → (1...𝑁) = ((1...(𝑁 − 1)) ∪ {𝑁}))
2423fveq2d 6885 . 2 (𝜑 → (lcm‘(1...𝑁)) = (lcm‘((1...(𝑁 − 1)) ∪ {𝑁})))
25 fzssz 13548 . . . . 5 (1...(𝑁 − 1)) ⊆ ℤ
2625a1i 11 . . . 4 (𝜑 → (1...(𝑁 − 1)) ⊆ ℤ)
27 fzfi 13995 . . . . 5 (1...(𝑁 − 1)) ∈ Fin
2827a1i 11 . . . 4 (𝜑 → (1...(𝑁 − 1)) ∈ Fin)
29 nnz 12614 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
301, 29syl 17 . . . 4 (𝜑𝑁 ∈ ℤ)
3126, 28, 303jca 1128 . . 3 (𝜑 → ((1...(𝑁 − 1)) ⊆ ℤ ∧ (1...(𝑁 − 1)) ∈ Fin ∧ 𝑁 ∈ ℤ))
32 lcmfunsn 16668 . . 3 (((1...(𝑁 − 1)) ⊆ ℤ ∧ (1...(𝑁 − 1)) ∈ Fin ∧ 𝑁 ∈ ℤ) → (lcm‘((1...(𝑁 − 1)) ∪ {𝑁})) = ((lcm‘(1...(𝑁 − 1))) lcm 𝑁))
3331, 32syl 17 . 2 (𝜑 → (lcm‘((1...(𝑁 − 1)) ∪ {𝑁})) = ((lcm‘(1...(𝑁 − 1))) lcm 𝑁))
3424, 33eqtrd 2771 1 (𝜑 → (lcm‘(1...𝑁)) = ((lcm‘(1...(𝑁 − 1))) lcm 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  cun 3929  wss 3931  {csn 4606  cfv 6536  (class class class)co 7410  Fincfn 8964  0cc0 11134  1c1 11135   + caddc 11137  cmin 11471  cn 12245  0cn0 12506  cz 12593  cuz 12857  ...cfz 13529   lcm clcm 16612  lcmclcmf 16613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-prod 15925  df-dvds 16278  df-gcd 16519  df-lcm 16614  df-lcmf 16615
This theorem is referenced by:  lcm1un  42031  lcm2un  42032  lcm3un  42033  lcm4un  42034  lcm5un  42035  lcm6un  42036  lcm7un  42037  lcm8un  42038  lcmineqlem19  42065  lcmineqlem22  42068
  Copyright terms: Public domain W3C validator