Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmfunnnd Structured version   Visualization version   GIF version

Theorem lcmfunnnd 41539
Description: Useful equation to calculate the least common multiple of 1 to n. (Contributed by metakunt, 29-Apr-2024.)
Hypothesis
Ref Expression
lcmfunnnd.1 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
lcmfunnnd (𝜑 → (lcm‘(1...𝑁)) = ((lcm‘(1...(𝑁 − 1))) lcm 𝑁))

Proof of Theorem lcmfunnnd
StepHypRef Expression
1 lcmfunnnd.1 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
21nncnd 12258 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
3 1cnd 11239 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
42, 3npcand 11605 . . . . . 6 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
54oveq2d 7432 . . . . 5 (𝜑 → (1...((𝑁 − 1) + 1)) = (1...𝑁))
6 nnm1nn0 12543 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
71, 6syl 17 . . . . . . . 8 (𝜑 → (𝑁 − 1) ∈ ℕ0)
8 nn0uz 12894 . . . . . . . . 9 0 = (ℤ‘0)
98eleq2i 2817 . . . . . . . 8 ((𝑁 − 1) ∈ ℕ0 ↔ (𝑁 − 1) ∈ (ℤ‘0))
107, 9sylib 217 . . . . . . 7 (𝜑 → (𝑁 − 1) ∈ (ℤ‘0))
11 1m1e0 12314 . . . . . . . . . 10 (1 − 1) = 0
1211fveq2i 6895 . . . . . . . . 9 (ℤ‘(1 − 1)) = (ℤ‘0)
1312eleq2i 2817 . . . . . . . 8 ((𝑁 − 1) ∈ (ℤ‘(1 − 1)) ↔ (𝑁 − 1) ∈ (ℤ‘0))
1413a1i 11 . . . . . . 7 (𝜑 → ((𝑁 − 1) ∈ (ℤ‘(1 − 1)) ↔ (𝑁 − 1) ∈ (ℤ‘0)))
1510, 14mpbird 256 . . . . . 6 (𝜑 → (𝑁 − 1) ∈ (ℤ‘(1 − 1)))
16 1z 12622 . . . . . . 7 1 ∈ ℤ
17 fzsuc2 13591 . . . . . . 7 ((1 ∈ ℤ ∧ (𝑁 − 1) ∈ (ℤ‘(1 − 1))) → (1...((𝑁 − 1) + 1)) = ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}))
1816, 17mpan 688 . . . . . 6 ((𝑁 − 1) ∈ (ℤ‘(1 − 1)) → (1...((𝑁 − 1) + 1)) = ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}))
1915, 18syl 17 . . . . 5 (𝜑 → (1...((𝑁 − 1) + 1)) = ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}))
205, 19eqtr3d 2767 . . . 4 (𝜑 → (1...𝑁) = ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}))
214sneqd 4636 . . . . 5 (𝜑 → {((𝑁 − 1) + 1)} = {𝑁})
2221uneq2d 4156 . . . 4 (𝜑 → ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}) = ((1...(𝑁 − 1)) ∪ {𝑁}))
2320, 22eqtrd 2765 . . 3 (𝜑 → (1...𝑁) = ((1...(𝑁 − 1)) ∪ {𝑁}))
2423fveq2d 6896 . 2 (𝜑 → (lcm‘(1...𝑁)) = (lcm‘((1...(𝑁 − 1)) ∪ {𝑁})))
25 fzssz 13535 . . . . 5 (1...(𝑁 − 1)) ⊆ ℤ
2625a1i 11 . . . 4 (𝜑 → (1...(𝑁 − 1)) ⊆ ℤ)
27 fzfi 13969 . . . . 5 (1...(𝑁 − 1)) ∈ Fin
2827a1i 11 . . . 4 (𝜑 → (1...(𝑁 − 1)) ∈ Fin)
29 nnz 12609 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
301, 29syl 17 . . . 4 (𝜑𝑁 ∈ ℤ)
3126, 28, 303jca 1125 . . 3 (𝜑 → ((1...(𝑁 − 1)) ⊆ ℤ ∧ (1...(𝑁 − 1)) ∈ Fin ∧ 𝑁 ∈ ℤ))
32 lcmfunsn 16614 . . 3 (((1...(𝑁 − 1)) ⊆ ℤ ∧ (1...(𝑁 − 1)) ∈ Fin ∧ 𝑁 ∈ ℤ) → (lcm‘((1...(𝑁 − 1)) ∪ {𝑁})) = ((lcm‘(1...(𝑁 − 1))) lcm 𝑁))
3331, 32syl 17 . 2 (𝜑 → (lcm‘((1...(𝑁 − 1)) ∪ {𝑁})) = ((lcm‘(1...(𝑁 − 1))) lcm 𝑁))
3424, 33eqtrd 2765 1 (𝜑 → (lcm‘(1...𝑁)) = ((lcm‘(1...(𝑁 − 1))) lcm 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1084   = wceq 1533  wcel 2098  cun 3937  wss 3939  {csn 4624  cfv 6543  (class class class)co 7416  Fincfn 8962  0cc0 11138  1c1 11139   + caddc 11141  cmin 11474  cn 12242  0cn0 12502  cz 12588  cuz 12852  ...cfz 13516   lcm clcm 16558  lcmclcmf 16559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738  ax-inf2 9664  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3959  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7991  df-2nd 7992  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-sup 9465  df-inf 9466  df-oi 9533  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-3 12306  df-n0 12503  df-z 12589  df-uz 12853  df-rp 13007  df-fz 13517  df-fzo 13660  df-fl 13789  df-mod 13867  df-seq 13999  df-exp 14059  df-hash 14322  df-cj 15078  df-re 15079  df-im 15080  df-sqrt 15214  df-abs 15215  df-clim 15464  df-prod 15882  df-dvds 16231  df-gcd 16469  df-lcm 16560  df-lcmf 16561
This theorem is referenced by:  lcm1un  41540  lcm2un  41541  lcm3un  41542  lcm4un  41543  lcm5un  41544  lcm6un  41545  lcm7un  41546  lcm8un  41547  lcmineqlem19  41574  lcmineqlem22  41577
  Copyright terms: Public domain W3C validator