| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcmfunnnd | Structured version Visualization version GIF version | ||
| Description: Useful equation to calculate the least common multiple of 1 to n. (Contributed by metakunt, 29-Apr-2024.) |
| Ref | Expression |
|---|---|
| lcmfunnnd.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| Ref | Expression |
|---|---|
| lcmfunnnd | ⊢ (𝜑 → (lcm‘(1...𝑁)) = ((lcm‘(1...(𝑁 − 1))) lcm 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcmfunnnd.1 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 2 | 1 | nncnd 12209 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 3 | 1cnd 11176 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 4 | 2, 3 | npcand 11544 | . . . . . 6 ⊢ (𝜑 → ((𝑁 − 1) + 1) = 𝑁) |
| 5 | 4 | oveq2d 7406 | . . . . 5 ⊢ (𝜑 → (1...((𝑁 − 1) + 1)) = (1...𝑁)) |
| 6 | nnm1nn0 12490 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) | |
| 7 | 1, 6 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝑁 − 1) ∈ ℕ0) |
| 8 | nn0uz 12842 | . . . . . . . . 9 ⊢ ℕ0 = (ℤ≥‘0) | |
| 9 | 8 | eleq2i 2821 | . . . . . . . 8 ⊢ ((𝑁 − 1) ∈ ℕ0 ↔ (𝑁 − 1) ∈ (ℤ≥‘0)) |
| 10 | 7, 9 | sylib 218 | . . . . . . 7 ⊢ (𝜑 → (𝑁 − 1) ∈ (ℤ≥‘0)) |
| 11 | 1m1e0 12265 | . . . . . . . . . 10 ⊢ (1 − 1) = 0 | |
| 12 | 11 | fveq2i 6864 | . . . . . . . . 9 ⊢ (ℤ≥‘(1 − 1)) = (ℤ≥‘0) |
| 13 | 12 | eleq2i 2821 | . . . . . . . 8 ⊢ ((𝑁 − 1) ∈ (ℤ≥‘(1 − 1)) ↔ (𝑁 − 1) ∈ (ℤ≥‘0)) |
| 14 | 13 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ((𝑁 − 1) ∈ (ℤ≥‘(1 − 1)) ↔ (𝑁 − 1) ∈ (ℤ≥‘0))) |
| 15 | 10, 14 | mpbird 257 | . . . . . 6 ⊢ (𝜑 → (𝑁 − 1) ∈ (ℤ≥‘(1 − 1))) |
| 16 | 1z 12570 | . . . . . . 7 ⊢ 1 ∈ ℤ | |
| 17 | fzsuc2 13550 | . . . . . . 7 ⊢ ((1 ∈ ℤ ∧ (𝑁 − 1) ∈ (ℤ≥‘(1 − 1))) → (1...((𝑁 − 1) + 1)) = ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)})) | |
| 18 | 16, 17 | mpan 690 | . . . . . 6 ⊢ ((𝑁 − 1) ∈ (ℤ≥‘(1 − 1)) → (1...((𝑁 − 1) + 1)) = ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)})) |
| 19 | 15, 18 | syl 17 | . . . . 5 ⊢ (𝜑 → (1...((𝑁 − 1) + 1)) = ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)})) |
| 20 | 5, 19 | eqtr3d 2767 | . . . 4 ⊢ (𝜑 → (1...𝑁) = ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)})) |
| 21 | 4 | sneqd 4604 | . . . . 5 ⊢ (𝜑 → {((𝑁 − 1) + 1)} = {𝑁}) |
| 22 | 21 | uneq2d 4134 | . . . 4 ⊢ (𝜑 → ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}) = ((1...(𝑁 − 1)) ∪ {𝑁})) |
| 23 | 20, 22 | eqtrd 2765 | . . 3 ⊢ (𝜑 → (1...𝑁) = ((1...(𝑁 − 1)) ∪ {𝑁})) |
| 24 | 23 | fveq2d 6865 | . 2 ⊢ (𝜑 → (lcm‘(1...𝑁)) = (lcm‘((1...(𝑁 − 1)) ∪ {𝑁}))) |
| 25 | fzssz 13494 | . . . . 5 ⊢ (1...(𝑁 − 1)) ⊆ ℤ | |
| 26 | 25 | a1i 11 | . . . 4 ⊢ (𝜑 → (1...(𝑁 − 1)) ⊆ ℤ) |
| 27 | fzfi 13944 | . . . . 5 ⊢ (1...(𝑁 − 1)) ∈ Fin | |
| 28 | 27 | a1i 11 | . . . 4 ⊢ (𝜑 → (1...(𝑁 − 1)) ∈ Fin) |
| 29 | nnz 12557 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
| 30 | 1, 29 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 31 | 26, 28, 30 | 3jca 1128 | . . 3 ⊢ (𝜑 → ((1...(𝑁 − 1)) ⊆ ℤ ∧ (1...(𝑁 − 1)) ∈ Fin ∧ 𝑁 ∈ ℤ)) |
| 32 | lcmfunsn 16621 | . . 3 ⊢ (((1...(𝑁 − 1)) ⊆ ℤ ∧ (1...(𝑁 − 1)) ∈ Fin ∧ 𝑁 ∈ ℤ) → (lcm‘((1...(𝑁 − 1)) ∪ {𝑁})) = ((lcm‘(1...(𝑁 − 1))) lcm 𝑁)) | |
| 33 | 31, 32 | syl 17 | . 2 ⊢ (𝜑 → (lcm‘((1...(𝑁 − 1)) ∪ {𝑁})) = ((lcm‘(1...(𝑁 − 1))) lcm 𝑁)) |
| 34 | 24, 33 | eqtrd 2765 | 1 ⊢ (𝜑 → (lcm‘(1...𝑁)) = ((lcm‘(1...(𝑁 − 1))) lcm 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∪ cun 3915 ⊆ wss 3917 {csn 4592 ‘cfv 6514 (class class class)co 7390 Fincfn 8921 0cc0 11075 1c1 11076 + caddc 11078 − cmin 11412 ℕcn 12193 ℕ0cn0 12449 ℤcz 12536 ℤ≥cuz 12800 ...cfz 13475 lcm clcm 16565 lcmclcmf 16566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-fz 13476 df-fzo 13623 df-fl 13761 df-mod 13839 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-prod 15877 df-dvds 16230 df-gcd 16472 df-lcm 16567 df-lcmf 16568 |
| This theorem is referenced by: lcm1un 42008 lcm2un 42009 lcm3un 42010 lcm4un 42011 lcm5un 42012 lcm6un 42013 lcm7un 42014 lcm8un 42015 lcmineqlem19 42042 lcmineqlem22 42045 |
| Copyright terms: Public domain | W3C validator |