Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcmfunnnd | Structured version Visualization version GIF version |
Description: Useful equation to calculate the least common multiple of 1 to n. (Contributed by metakunt, 29-Apr-2024.) |
Ref | Expression |
---|---|
lcmfunnnd.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
Ref | Expression |
---|---|
lcmfunnnd | ⊢ (𝜑 → (lcm‘(1...𝑁)) = ((lcm‘(1...(𝑁 − 1))) lcm 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcmfunnnd.1 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
2 | 1 | nncnd 11919 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
3 | 1cnd 10901 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ ℂ) | |
4 | 2, 3 | npcand 11266 | . . . . . 6 ⊢ (𝜑 → ((𝑁 − 1) + 1) = 𝑁) |
5 | 4 | oveq2d 7271 | . . . . 5 ⊢ (𝜑 → (1...((𝑁 − 1) + 1)) = (1...𝑁)) |
6 | nnm1nn0 12204 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) | |
7 | 1, 6 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝑁 − 1) ∈ ℕ0) |
8 | nn0uz 12549 | . . . . . . . . 9 ⊢ ℕ0 = (ℤ≥‘0) | |
9 | 8 | eleq2i 2830 | . . . . . . . 8 ⊢ ((𝑁 − 1) ∈ ℕ0 ↔ (𝑁 − 1) ∈ (ℤ≥‘0)) |
10 | 7, 9 | sylib 217 | . . . . . . 7 ⊢ (𝜑 → (𝑁 − 1) ∈ (ℤ≥‘0)) |
11 | 1m1e0 11975 | . . . . . . . . . 10 ⊢ (1 − 1) = 0 | |
12 | 11 | fveq2i 6759 | . . . . . . . . 9 ⊢ (ℤ≥‘(1 − 1)) = (ℤ≥‘0) |
13 | 12 | eleq2i 2830 | . . . . . . . 8 ⊢ ((𝑁 − 1) ∈ (ℤ≥‘(1 − 1)) ↔ (𝑁 − 1) ∈ (ℤ≥‘0)) |
14 | 13 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ((𝑁 − 1) ∈ (ℤ≥‘(1 − 1)) ↔ (𝑁 − 1) ∈ (ℤ≥‘0))) |
15 | 10, 14 | mpbird 256 | . . . . . 6 ⊢ (𝜑 → (𝑁 − 1) ∈ (ℤ≥‘(1 − 1))) |
16 | 1z 12280 | . . . . . . 7 ⊢ 1 ∈ ℤ | |
17 | fzsuc2 13243 | . . . . . . 7 ⊢ ((1 ∈ ℤ ∧ (𝑁 − 1) ∈ (ℤ≥‘(1 − 1))) → (1...((𝑁 − 1) + 1)) = ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)})) | |
18 | 16, 17 | mpan 686 | . . . . . 6 ⊢ ((𝑁 − 1) ∈ (ℤ≥‘(1 − 1)) → (1...((𝑁 − 1) + 1)) = ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)})) |
19 | 15, 18 | syl 17 | . . . . 5 ⊢ (𝜑 → (1...((𝑁 − 1) + 1)) = ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)})) |
20 | 5, 19 | eqtr3d 2780 | . . . 4 ⊢ (𝜑 → (1...𝑁) = ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)})) |
21 | 4 | sneqd 4570 | . . . . 5 ⊢ (𝜑 → {((𝑁 − 1) + 1)} = {𝑁}) |
22 | 21 | uneq2d 4093 | . . . 4 ⊢ (𝜑 → ((1...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}) = ((1...(𝑁 − 1)) ∪ {𝑁})) |
23 | 20, 22 | eqtrd 2778 | . . 3 ⊢ (𝜑 → (1...𝑁) = ((1...(𝑁 − 1)) ∪ {𝑁})) |
24 | 23 | fveq2d 6760 | . 2 ⊢ (𝜑 → (lcm‘(1...𝑁)) = (lcm‘((1...(𝑁 − 1)) ∪ {𝑁}))) |
25 | fzssz 13187 | . . . . 5 ⊢ (1...(𝑁 − 1)) ⊆ ℤ | |
26 | 25 | a1i 11 | . . . 4 ⊢ (𝜑 → (1...(𝑁 − 1)) ⊆ ℤ) |
27 | fzfi 13620 | . . . . 5 ⊢ (1...(𝑁 − 1)) ∈ Fin | |
28 | 27 | a1i 11 | . . . 4 ⊢ (𝜑 → (1...(𝑁 − 1)) ∈ Fin) |
29 | nnz 12272 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
30 | 1, 29 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
31 | 26, 28, 30 | 3jca 1126 | . . 3 ⊢ (𝜑 → ((1...(𝑁 − 1)) ⊆ ℤ ∧ (1...(𝑁 − 1)) ∈ Fin ∧ 𝑁 ∈ ℤ)) |
32 | lcmfunsn 16277 | . . 3 ⊢ (((1...(𝑁 − 1)) ⊆ ℤ ∧ (1...(𝑁 − 1)) ∈ Fin ∧ 𝑁 ∈ ℤ) → (lcm‘((1...(𝑁 − 1)) ∪ {𝑁})) = ((lcm‘(1...(𝑁 − 1))) lcm 𝑁)) | |
33 | 31, 32 | syl 17 | . 2 ⊢ (𝜑 → (lcm‘((1...(𝑁 − 1)) ∪ {𝑁})) = ((lcm‘(1...(𝑁 − 1))) lcm 𝑁)) |
34 | 24, 33 | eqtrd 2778 | 1 ⊢ (𝜑 → (lcm‘(1...𝑁)) = ((lcm‘(1...(𝑁 − 1))) lcm 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∪ cun 3881 ⊆ wss 3883 {csn 4558 ‘cfv 6418 (class class class)co 7255 Fincfn 8691 0cc0 10802 1c1 10803 + caddc 10805 − cmin 11135 ℕcn 11903 ℕ0cn0 12163 ℤcz 12249 ℤ≥cuz 12511 ...cfz 13168 lcm clcm 16221 lcmclcmf 16222 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-prod 15544 df-dvds 15892 df-gcd 16130 df-lcm 16223 df-lcmf 16224 |
This theorem is referenced by: lcm1un 39949 lcm2un 39950 lcm3un 39951 lcm4un 39952 lcm5un 39953 lcm6un 39954 lcm7un 39955 lcm8un 39956 lcmineqlem19 39983 lcmineqlem22 39986 |
Copyright terms: Public domain | W3C validator |