| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prmgaplcmlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for prmgaplcm 16979: The least common multiple of all positive integers less than or equal to a number plus an integer greater than 1 and less than or equal to the number is divisible by that integer. (Contributed by AV, 14-Aug-2020.) (Revised by AV, 27-Aug-2020.) |
| Ref | Expression |
|---|---|
| prmgaplcmlem1 | ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∥ ((lcm‘(1...𝑁)) + 𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzelz 13431 | . . 3 ⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ∈ ℤ) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∈ ℤ) |
| 3 | fzssz 13433 | . . . 4 ⊢ (1...𝑁) ⊆ ℤ | |
| 4 | fzfi 13886 | . . . 4 ⊢ (1...𝑁) ∈ Fin | |
| 5 | 3, 4 | pm3.2i 470 | . . 3 ⊢ ((1...𝑁) ⊆ ℤ ∧ (1...𝑁) ∈ Fin) |
| 6 | lcmfcl 16546 | . . . 4 ⊢ (((1...𝑁) ⊆ ℤ ∧ (1...𝑁) ∈ Fin) → (lcm‘(1...𝑁)) ∈ ℕ0) | |
| 7 | 6 | nn0zd 12504 | . . 3 ⊢ (((1...𝑁) ⊆ ℤ ∧ (1...𝑁) ∈ Fin) → (lcm‘(1...𝑁)) ∈ ℤ) |
| 8 | 5, 7 | mp1i 13 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (lcm‘(1...𝑁)) ∈ ℤ) |
| 9 | breq1 5098 | . . 3 ⊢ (𝑥 = 𝐼 → (𝑥 ∥ (lcm‘(1...𝑁)) ↔ 𝐼 ∥ (lcm‘(1...𝑁)))) | |
| 10 | dvdslcmf 16549 | . . . 4 ⊢ (((1...𝑁) ⊆ ℤ ∧ (1...𝑁) ∈ Fin) → ∀𝑥 ∈ (1...𝑁)𝑥 ∥ (lcm‘(1...𝑁))) | |
| 11 | 5, 10 | mp1i 13 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∀𝑥 ∈ (1...𝑁)𝑥 ∥ (lcm‘(1...𝑁))) |
| 12 | 2eluzge1 12786 | . . . . 5 ⊢ 2 ∈ (ℤ≥‘1) | |
| 13 | fzss1 13470 | . . . . 5 ⊢ (2 ∈ (ℤ≥‘1) → (2...𝑁) ⊆ (1...𝑁)) | |
| 14 | 12, 13 | mp1i 13 | . . . 4 ⊢ (𝑁 ∈ ℕ → (2...𝑁) ⊆ (1...𝑁)) |
| 15 | 14 | sselda 3930 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∈ (1...𝑁)) |
| 16 | 9, 11, 15 | rspcdva 3574 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∥ (lcm‘(1...𝑁))) |
| 17 | iddvds 16187 | . . . 4 ⊢ (𝐼 ∈ ℤ → 𝐼 ∥ 𝐼) | |
| 18 | 1, 17 | syl 17 | . . 3 ⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ∥ 𝐼) |
| 19 | 18 | adantl 481 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∥ 𝐼) |
| 20 | 2, 8, 2, 16, 19 | dvds2addd 16210 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∥ ((lcm‘(1...𝑁)) + 𝐼)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 ∀wral 3048 ⊆ wss 3898 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 Fincfn 8879 1c1 11018 + caddc 11020 ℕcn 12136 2c2 12191 ℤcz 12479 ℤ≥cuz 12742 ...cfz 13414 ∥ cdvds 16170 lcmclcmf 16507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9542 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9337 df-inf 9338 df-oi 9407 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-n0 12393 df-z 12480 df-uz 12743 df-rp 12897 df-fz 13415 df-fzo 13562 df-seq 13916 df-exp 13976 df-hash 14245 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 df-clim 15402 df-prod 15818 df-dvds 16171 df-lcmf 16509 |
| This theorem is referenced by: prmgaplcmlem2 16971 |
| Copyright terms: Public domain | W3C validator |